KCET – 2016 TEST PAPER WITH ANSWER KEY (HELD ON WEDNESDAY 4th MAY, 2016)

MATHEMATICS

1.	The maximum value of	$\left(\frac{1}{x}\right)^x$	is
----	----------------------	------------------------------	----

- $(1) \left(\frac{1}{e}\right)^e$
- (2) e^{1/e}
- (3) e^{c}
- (4) e

Ans: (2)

- 2. The contrapositive of the converse of the statement "If x is a prime number then x is odd" is
 - (1) If x is not a prime number then x is not an odd
 - (2) If x is a prime number then it is not odd.
 - (3) If x is not an odd number then x is not a prime number.
 - (4) If x is not a prime number then x is odd

Ans: (1)

- 3. The simplified form of $i^n + i^{n+1} + i^{n+2} + i^{n+3}$ is
 - (1) i

- (2) -1
- (3) 1
- (4) 0

Ans: (4)

- 4. The coefficient of variation of two distributions are 60 and 70. the standard deviation are 21 and 16 respectively, then their mean is
 - (1) 22.85
- (2) 28.25
- (3) 23
- (4) 35

Ans: (1, 4)

5. The slope of the tangent to the curve

$$x = t^2 + 3t - 8$$
, $y = 2t^2 - 2t - 5$ at the point (2, -1) is

- (1) $\frac{-6}{7}$
- (2) $\frac{7}{6}$
- (3) $\frac{6}{7}$
- (4) $\frac{22}{7}$

Ans: (3)

6. Suppose $\vec{a} + \vec{b} + \vec{c} = 0, |\vec{a}| = 3, |\vec{b}| = 5, |\vec{c}| = 7$, then

the angle between $\vec{a} \& \vec{b}$ is

- (1) $\pi/4$
- (2) $\pi/3$
- (3) $\pi/2$
- $(4) \pi$

Ans: (2)

- 7. Let * be a binary operation defined on R by a * b = $\frac{a+b}{4} \forall a,b \in R \text{ then the operation * is}$
 - (1) Neither Associative nor commutative
 - (2) Associative but not commutative
 - (3) Commutative but not Associative
 - (4) Commutative and Associative

Ans: (3)

8. if
$$x^m y^n = (x + y)^{m+n}$$
 then $\frac{dy}{dx}$ is equal to

- $(1) \frac{y}{x}$
- (2) 0
- (3) xy
- $(4) \frac{x+y}{xy}$

Ans: (1)

$$9. \ \ \text{If} \ \ y = e^{sin^{-1}\left(t^2 - I\right)} \ \& \ x = e^{sec^{-1}\left(\frac{1}{t^2 - I}\right)} \ \text{then} \ \frac{dy}{dx} \ \ \text{is equal to}$$

- $(1) \frac{-x}{y}$
- (2) $\frac{y}{x}$
- $(3) \frac{-y}{x}$
- (4) $\frac{x}{y}$

Ans: (3)

- 10. If $1 + \sin \theta + \sin^2 \theta + \dots$ upto $\infty = 2\sqrt{3} + 4$, then θ
 - (1) $3\pi/4$
- (2) $\pi/3$
- (3) $\pi/4$
- (4) $\pi/6$

Ans: (2)

11. The order and degree of the differential equation

$$\left[1 + \left(\frac{dy}{dx}\right)^2 + \sin\left(\frac{dy}{dx}\right)\right]^{3/4} = \frac{d^2y}{dx^2}$$

- (1) $\begin{array}{l} \text{order} = 2 \\ \text{deg ree} = \text{not defined} \end{array}$
- order = 2 $(2) \quad \text{deg ree} = \frac{3}{4}$
- (3) order = 2 degree =
- $(4) \quad \begin{array}{l} \text{order} = 2 \\ \text{deg ree} = 3 \end{array}$

Ans: (1)

- The value of $\sin^{-1} \left(\cos \frac{53\pi}{5} \right)$ is

Ans:

- 13. If a = 3, b = 4, c = 5 each one of \vec{a} , \vec{b} & \vec{c} is perpendicular to the sum of the remaining then $|\vec{a} + \vec{b} + \vec{c}|$ is equal to
 - (1) $\sqrt{5}$

Ans: **(2)**

- The real part of $(1-\cos\theta+i\sin\theta)^{-1}$ is
 - (1) $\cot \frac{\theta}{2}$

(4) Ans:

- Area lying between the curves $y^2 = 2x$ and y = x is
 - (1) $\frac{3}{4}$ sq.units
- (2) $\frac{1}{4}$ sq.units
- (4) $\frac{2}{3}$ sq.units

Ans: **(4)**

- 16. If the straight lines 2x+3y-3=0 and x + ky + 7 = 0 are perpendicular, then the value of k is
 - (1) -3/2
- (2) -2/3
- (3) 3/2
- (4) 2/3

(2) Ans:

17. If
$$A = \frac{1}{\pi} \begin{bmatrix} \sin^{-1}(\pi x) & \tan^{-1}(\frac{x}{\pi}) \\ \sin^{-1}(\frac{x}{\pi}) & \cot^{-1}(\pi x) \end{bmatrix}, B = \frac{1}{\pi} \begin{bmatrix} -\cos^{-1}(\pi x) & \tan^{-1}(\frac{x}{\pi}) \\ \sin^{-1}(\frac{x}{\pi}) & -\tan^{-1}(\pi x) \end{bmatrix}$$

then A - B is equal to

- (3) 0
- (4) I

Ans: **(1)**

- The set A has 4 elements and the set B has 5 elements then the number of injective mappings that can be defined from A to B is
 - (1) 120
- (2) 60
- (3) 72
- (4) 144

- 19. Integrating factor of $x \frac{dy}{dx} y = x^4 3x$ is

Ans: (2)

- 20. If $A = \begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix}$ then $A^2 5A$ is equal to
 - (1) -7I
- (2) 7I
- (3) -I
- (4) I

Ans:

- Two cards are drawn at random from a pack of 52 cards. The probability of these two being "Aces" is
 - (1) $\frac{1}{13}$

- 22. The value of $\int_{-\pi/4}^{\pi/4} \sin^{103} x \cdot \cos^{101} x dx$ is (1) 0 (2) 2

- $\lim_{x\to 0} \frac{xe^x \sin x}{x}$ is equal to
 - (1) 2
- (2) 0
- (3) 1
- (4) 3

Ans: **(2)**

- If $x = 2 + 3 \cos \theta$ and $y = 1 3 \sin \theta$ represent a circle then the centre and radius is
 - (1) (-2,-1),3 (2) $(1,2),\frac{1}{3}$
- - (3) (2,1),3

Ans: (3)

- If $\sin^{-1} x + \sin^{-1} y = \frac{\pi}{2}$, then x^2 is equal to
 - (1) $\sqrt{1-y}$
- (3) y^2

Ans: **(4)**

- The value of the $\sin 1^0 + \sin 2^0 + ... + \sin 359^0$ is equal to
 - (1) 180
- (2) -1
- (3) 1
- (4) 0

Ans: (4)

- The 11th term in the expansion of $\left(x + \frac{1}{\sqrt{x}}\right)^{14}$ is
 - (1) $\frac{x}{1001}$

Ans:

- 28. If A is a matrix of order $m \times n$ and B is a matrix such that AB' and B'A are both defined, the order of the matrix B is
 - (1) $m \times n$
- (2) n \times m
- (3) $n \times n$
- (4) $m \times m$

(1) Ans:

- The differential coefficient of $\log_{10} x$ with respect to $\log_x 10$ is $(1) \frac{x^2}{100} \qquad (2) (\log_x 10)^2$
- (3) $-(\log_{10} x)^2$

Ans: (3)

30. The two curves $x^3 - 3xy^2 + 2 = 0$ and

$$3x^2y - y^3 = 2$$

- (1) Cut at an angle $\pi/4$
- (2) Cut at an angle $\pi/3$
- (3) Cut each other at right angle
- (4) Touch each other

Ans: (3)

- 31. If $tan^{-1}(x^2 + y^2) = \alpha$ then $\frac{dy}{dx}$ is equal to

Ans: (4)

- 32. The rate of change of area of a circle with respect to its radius at r = 2 cms is
- (2) 2
- (4) 4

- 33. $\int_{0}^{\pi/2} \frac{\sin^{1000} x dx}{\sin^{1000} x + \cos^{1000} x}$ is equal to

- (4) 1000

- 34. The value fo $\tan \frac{\pi}{8}$ is equal to $(1) \ 1 \sqrt{2} \qquad (2) \ \frac{1}{\sqrt{2} + 1}$ $(3) \ \sqrt{2} + 1 \qquad (4) \ \frac{1}{2}$

CODE - C4

35. The solution for the differential equation $\frac{dy}{y} + \frac{dx}{x} = 0$

- (1) x + y = c

- (3) $\log x \cdot \log y = c$ (4) $\frac{1}{y} + \frac{1}{x} = c$

(2) Ans:

Find the co-ordinates of the foot of the perpendicular 36. drawn from the origin to the plane 5y + 8 = 0

- (1) $\left(0, -\frac{8}{5}, 0\right)$ (2) $\left(\frac{8}{25}, 0, 0\right)$
- (3) $\left(0, \frac{8}{5}, 0\right)$ (4) $\left(0, -\frac{18}{5}, 2\right)$

(1) Ans:

- The simplified from of $\tan^{-1} \left(\frac{x}{y} \right) \tan^{-1} \left(\frac{x-y}{x+y} \right)$ is equal to
 - (1) π
- (3) $\frac{\pi}{4}$

Ans: (3)

If $A = \begin{bmatrix} \cos 2\theta & -\sin 2\theta \\ \sin 2\theta & \cos 2\theta \end{bmatrix}$ and $A + A^T = I$ 38.

> Where I si teh unit matrix of $2 \times 2 \& A^T$ is the transpose of A, then the value of θ is equal to

- (1) $3\pi/2$
- (2) π
- (3) $\pi/3$

Ans: (4)

- The value of $\int \frac{e^{6\log x} e^{5\log x}}{e^{4\log x} e^{3\log x}} dx$ is equal to
 - $(1) \frac{1}{\mathbf{x}}$

- (4) 0

(3) Ans:

- 40. If $3\tan^{-1} x + \cot^{-1} x = \pi$ then x equal to

 (1) 1/2 (2) -1

 (3) 1 (4) 0

- 41. The value of $\int \frac{e^{x}(x^{2} \tan^{-1} x + \tan^{-1} x + 1)}{x^{2} + 1} dx$ is equal to

 - (1) $e^{tan^{-1}x} + c$ (2) $tan^{-1}(x^c) + c$
 - (3) $\tan^{-1}(e^x) + c$ (4) $e^x \tan^{-1} x + c$

Ans: (4)

- 42. The value of x if $x(\hat{i} + \hat{J} + \hat{k})$ is a unit vector is

- If $\cos \alpha, \cos \beta, \cos \gamma$ are the direction cosines of a vector $\vec{\mathbf{a}}$, then $\cos 2\alpha + \cos 2\beta + \cos 2\gamma$ is equal to
 - (1) 0
- (2) -1
- (3) 3
- (4) 2

Ans: (2)

- If A is any square matrix of order 3×3 then |3A| is equal to
- (2) 27|A|

Ans:

45. If x y z are not equal and $\neq 0, \neq 1$ the value of

- (1) $\log(x + y + z)$ (2) 0 (3) $\log(6xyz)$ (4) $\log(xyz)$

CODE - C4

- 46. The function f(x) = [x] where [x] the greatest integer function is continuous at
 - (1) -2
- (2) 1
- (3) 4
- (4) 1.5

Ans: **(4)**

- 47. If $2\vec{a}.\vec{b} = |\vec{a}|.|\vec{b}|$ then the angle between $\vec{a} \& \vec{b}$ is
 - $(1) 60^{\circ}$
- (3) 0°
- $(4) 30^{\circ}$

Ans: **(1)**

- 48. The length of latus rectum of the parabola $4y^2 + 3x + 3y + 1 = 0$ is
 - (1) 3/4
- (2) 12
- (3) 7
- (4) 4/3

Ans: (1)

- 49. If $P(A \cap B) = 7/10 P(B) = 17/20$, where P stands for probability then P(A | B) is equal to
 - (1) 1/8
- (2) 14/17
- (3) 17/20
- (4) 7/8

Ans: (2)

50. If x y z are all different and not equal to zero and

$$\begin{vmatrix} 1+x & 1 & 1 \\ 1 & 1+y & 1 \\ 1 & 1 & 1+z \end{vmatrix} = 0$$
 then the value of

 $x^{-1} + y^{-1} + z^{-1}$ is equal to

- (3) $x^{-1}y^{-1}z^{-1}$

Ans: **(1)**

- The value of $\int \frac{e^x (1+x) dx}{\cos^2(e^x \cdot x)}$ is equal to

- (1) $\cot(e^x) + c$ (2) $\tan(e^x) + c$ (3) $\tan(e^x) + c$ (4) $-\cot(e^x) + c$

(3) Ans:

- Two dice are thrown simultaneously, the probability of obtaining a total score of 5 is

- 53. If \vec{a} and \vec{b} are unit vectors then what is the angle between \vec{a} and \vec{b} for $\sqrt{3}\vec{a} - \vec{b}$ to be unit vector?
 - $(1) 90^{\circ}$
- (2) 60°
- (3) 45°
- $(4) 30^{\circ}$

Ans: (4)

The general solution of $\cot \theta + \tan \theta = 2$ is

(1)
$$\theta = n\pi + (-1)^n \pi/8$$
 (2) $\theta = \frac{n\pi}{2} + (-1)^n \pi/6$

(3)
$$\frac{n\pi}{2} + (-1)^n \pi/4$$

(3)
$$\frac{n\pi}{2} + (-1)^n \pi/4$$
 (4) $\theta = \frac{n\pi}{2} + (-1)^n \pi/8$

Ans: **(3)**

- 55. The vector equation of the plane which is at a distance of $3/\sqrt{14}$ from the origin and the normal from the origin is $2\hat{i} - 3\hat{j} + \hat{k}$ is
 - (1) $\vec{r} \cdot (2\hat{i} + \hat{k}) = 3$ (2) $\vec{r} \cdot (\hat{i} + 2\hat{j}) = 3$
 - (3) $\vec{r} \cdot (\hat{i} + \hat{j} + \hat{k}) = 9$ (4) $\vec{r} \cdot (2\hat{i} 3\hat{j} + \hat{k}) = 3$

- 56. The value of $\int_{2}^{8} \frac{\sqrt{10-x}}{\sqrt{x}+\sqrt{10-x}} dx$ is
- (2) 8
- (3) 0
- (4) 10

- 57. The sum of 1st n terms of the series $\frac{1^2}{1} + \frac{1^2 + 2^2}{1 + 2} + \frac{1^2 + 2^2 + 3^2}{1 + 2 + 3} + \dots$

58. If $x^y = e^{x-y}$ then $\frac{dy}{dx}$ is equal to

- (1) $\frac{1}{y} \frac{1}{x y}$ (2) $\frac{\log x}{(1 + \log x)^2}$ (3) $\frac{e^x}{x^{x y}}$ (4) $\frac{\log x}{\log(x y)}$

Ans: **(2)**

59. Let $f: R \to R$ be defined by f(x) = 2x + 6 which is a bijective mapping then $f^{-1}(x)$ is given by

- (1) 6x + 2
- (2) x 3
- (3) 2x + 6
- (4) $\frac{x}{2} 3$

Ans: **(4)** 60. The equation of the normal to the curve $(1+x^2)=2-x$ where the tangent crosses x - axis is

- (1) x + 5y + 10 = 0 (2) 5x+y+10=0(3) x 5y 10 = 0 (4) 5x-y-10=0