1. If the lines $x-y-1=0$, $4x+3y=k$ and $2x-3y+1=0$ are concurrent, then k is
 a 1 b -1
c 25 d 5

2. The number of common tangents to the circles $x^2+y^2 = 4$ and $x^2+y^2-8x+12 = 0$ is
 a 1 b 2 c 3 d 4

3. The centroid of a triangle formed by the points $0,0, \cos \theta, \sin \theta$ and $\sin \theta, -\cos \theta$ lie on the line $y = 2x$; then θ is
 a $\tan^{-1} 2$ b $\tan^{-1} \frac{1}{3}$
c $\tan^{-1} \frac{1}{2}$ d $\tan^{-1} -3$

4. The orthocentre of the triangle formed by 8,0 and 4,6 with the origin, is
 a 4, $\frac{8}{3}$ b 3, -4
 b 4,3 d 3,4

5. If the angle between two lines represented by $2x^2+5xy+3y^2+7y+4 = 0$ is $\tan^{-1} m$, then m is equal to
 a $\frac{1}{5}$ b 1
 c $\frac{7}{5}$ d 7

6. If $xy-4x+3y-\lambda = 0$ represents the asymptotes of $xy-4x+3y = 0$, then λ is
 a 3 b -6 c 8 d 12

7. The equation of the chord of the parabola $y^2 = 8x$ which is bisected at the point 2, -3, is
 a $4x+3y+1 = 0$
b $3x+4y -1 = 0$
c $4x -3y-1 = 0$
d $3x -4y+1 =0$

8. If $x+y+1 = 0$ touches the parabola $y^2 = \lambda x$, then λ is equal to
9. The equations \(x = \frac{e^t + e^{-t}}{2}, \ y = \frac{e^t - e^{-t}}{2} \) where \(t \) is real number, represents

a) an ellipse b) a parabola
c) a hyperbola d) a circle

10. If \(e_1 \) and \(e_2 \) are the eccentricities of two conics with \(e_1^2 + e_2^2 = 3 \), then the conics are

a) ellipses b) parabolas
c) circles d) hyperbolas

11. The sum of the distances of any point on the ellipse \(3x^2 + 4y^2 = 24 \) from its foci, is

a) \(8 \sqrt{2} \) b) \(8 \)
c) \(16 \sqrt{2} \) d) \(4 \sqrt{2} \)

12. In \(\triangle ABC \), if \(a \) tends to \(2c \) and \(b \) tends to \(3c \), then \(\cos B \) tends to

a) \(-1\) b) \(\frac{1}{2} \) c) \(\frac{1}{3} \) d) \(\frac{2}{3} \)

13. If \(\sin \pi \cos \theta = \cos \pi \sin \theta \), then which of the following is correct

a) \(\cos \theta = \frac{3}{2 \sqrt{2}} \)
b) \(\cos \left(\theta - \frac{\pi}{2} \right) = \frac{1}{2 \sqrt{2}} \)
c) \(\cos \left(\theta - \frac{\pi}{4} \right) = \frac{1}{\sqrt{2}} \)
d) \(\cos \left(\theta + \frac{\pi}{4} \right) = -\frac{1}{\sqrt{2}} \)

14. The value of \(\sin 12^0 \sin 48^0 \sin 54^0 \) is equal to

a) \(\frac{2}{3} \) b) \(\frac{1}{2} \)
(c) \(\frac{1}{8} \) (d) \(\frac{1}{3} \)

15. If \(3 \sin^{-1} \left(\frac{2x}{1+x^2} \right) - 4 \cos^{-1} \left(\frac{1-x^2}{1+x^2} \right) + 2 \tan^{-1} \left(\frac{2x}{1-x^2} \right) = \frac{\pi}{3} \), then \(x \) is equal to

a) \(\frac{1}{\sqrt{3}} \) b) \(-\frac{1}{\sqrt{3}} \)
16. The shadow of a pole is $\sqrt{3}$ times longer. The angle of elevation is equal to:
 a) 40° b) 45° c) $\frac{\pi}{3}$ d) 30°

17. The point of contact of the line $x - y + 2 = 0$ with the parabola $y^2 - 8x = 0$ is:
 a) 2, 4 b) -2, 4 c) 2, -4 d) 2, 2

18. If the sides of a triangle are $x^2 + x + 1$, $x^2 - 1$, and $2x + 1$, then the greatest angle is:
 a) 90° b) 135° c) 115° d) 120°

19. The value of $\cos 10^\circ \cdot \cos 20^\circ \cdot \cos 30^\circ \cdots \cos 1790^\circ$ is equal to:
 a) $\frac{1}{\sqrt{2}}$ b) 0 c) 1 d) -1

20. If $\cot \alpha + \beta = 0$, then $\sin \alpha + 2\beta$ is equal to:
 a) $\sin \alpha$ b) $\cos \alpha$ c) $\sin \beta$ d) $\cos 2\beta$

21. The value of $4 \sin A \cos^3 A - 4 \cos A \sin^3 A$ is equal to:
 a) $\cos 2A$ b) $\sin 3A$ c) $\sin 2A$ d) $\sin 4A$

22. If the solutions for q of $\cos q + \cos p = 0$, $0 < q < p$ are in AP, then the numerically smallest common difference of AP is:
 a) $\frac{\pi}{p + q}$ b) $\frac{2\pi}{p + q}$ c) $\frac{\pi}{2(p + q)}$ d) $\frac{1}{p + q}$

23. The value of k for which $\cos x + \sin x - 2 + k \sin x \cos x - 1 = 0$ is an identity is:
 a) -1 b) -2 c) 0 d) 1
24. If $4 \cos^{-1} x + \sin^{-1} x = \pi$, then the value of x is
 a $\frac{1}{2}$ b $\frac{1}{\sqrt{2}}$
 c $\frac{\sqrt{3}}{2}$ d $\frac{2}{\sqrt{3}}$

25. A problem in mathematics is given to 3 students whose chances of solving individually are $\frac{1}{2}$, $\frac{1}{3}$ and $\frac{1}{4}$. The probability that the problem will be solved at least by one, is
 a $\frac{1}{4}$ b $\frac{1}{24}$
 c $\frac{23}{24}$ d $\frac{3}{4}$

26. In a non-leap year the probability of getting 53 Sundays or 53 Tuesdays or 53 Thursdays is
 a $\frac{1}{7}$ b $\frac{2}{7}$
 c $\frac{3}{7}$ d $\frac{4}{7}$

27. The probability for a randomly chosen month to have its 10th day as Sunday, is
 a $\frac{1}{36}$ b $\frac{10}{12}$
 c $\frac{10}{84}$ d $\frac{1}{7}$

28. If the mean of numbers $27+x, 31+x, 89+x, 107+x, 156+x$ is 82, then the mean of $130+x, 126+x, 68+x, 50+x, 1+x$ is
 a 79 b 157
 c 82 d 75

29. If μ is the mean distribution of $\{Y_i, f_i\}$, then $\sum f_i(y_i - \mu)$ is equal to
 a MD b SD
 c 0 d relative frequency

30. Two cards are drawn successively with replacement from a well-shuffled pack of 52 cards. The probability of drawing two aces is
 a $\frac{1}{13}$ b $\frac{1}{13} \times \frac{1}{17}$
 c $\frac{1}{52} \times \frac{1}{51}$ d $\frac{1}{13} \times \frac{1}{13}$
31. If \(\sec \left(\frac{x+y}{x-y} \right) = a \), then \(\frac{dy}{dx} \) is

\[a \quad \frac{x}{y} \quad \text{b} \quad \frac{y}{x} \quad \text{c} \quad \frac{y}{d \quad x} \]

32. If \(x^y = e^x \), then \(\frac{dy}{dx} \) is equal to

\[a \quad \frac{\log x}{x \log x} \quad \text{b} \quad \frac{\log x}{x - \log x} \quad \text{c} \quad \frac{\log x}{x + \log x} \quad \text{d} \quad \frac{y \log x}{x (1 + \log x)} \]

33. For \(y = \cos x \sin^{-1} x \) which of the following is true?

\[a \quad 1 - x^2 y_2 + xy_1 - m^2 y = 0 \]
\[b \quad 1 - x^2 y_2 - xy_1 + m^2 y = 0 \]
\[c \quad 1 + x^2 y_2 + xy_1 - m^2 y = 0 \]
\[d \quad 1 - x^2 y_2 + xy_1 + m^2 y = 0 \]

34. If \(f(x) = \begin{cases} x + 1 & \text{for} \quad x \leq 1 \\ 3 - ax^2 & \text{for} \quad x > 1 \end{cases} \) is continuous at \(x = 1 \), then the value of \(a \) is

\[a \quad -1 \quad \text{b} \quad 2 \quad \text{c} \quad -3 \quad \text{d} \quad 1 \]

35. \(\lim_{x \to 2} \frac{\alpha \cot x - \alpha \cot x}{\cot x - \cos x} \) is equal to

\[a \quad \log a \quad \text{b} \quad \log 2 \quad \text{c} \quad \log a \quad \text{d} \quad \log x \]

36. If \(f'(0) = k \), then \(\lim_{x \to 0} \frac{2f(x) - 3f(2x) + f(4x)}{x^2} \) is equal to

\[a \quad k \quad \text{b} \quad 2k \quad \text{c} \quad 3k \quad \text{d} \quad 4k \quad \text{e} \quad k \]

37. If \(g \) is the inverse function of \(f \) and \(f'(x) = \frac{1}{1 + x^2} \), then \(g'(x) \) is equal to

\[a \quad 1+gx \quad \text{b} \quad 1 - gx \quad \text{c} \quad 1+gx \quad \text{d} \quad 1 - gx \]

38. The curves \(4x^2 + 9y^2 = 72 \) and \(x^2 - y^2 = 5 \) at \(3,2 \)
39. The velocity \(v \) m/s of a particle is proportional to the cube of the time. If the velocity after 2 s is 4 m/s, then \(v \) is equal to

\[
\frac{t^3}{2}
\]

40. The minimum value of \(x \log x \) is equal to

\[
\frac{1}{e}
\]

41. A particle moves along the x-axis so that its position is given \(x = 2t^3 - 3t^2 \) at a time \(t \) second. What is the time interval during which particle will be on the negative half of the axis?

\[
0 < t < \frac{3}{2}
\]

42. A stone thrown vertically upwards satisfies the equations \(s = 80t - 16t^2 \). The time required to reach the maximum height is

\[
2 s
\]

43. If \(f(x+y = f(x, f(y, f(3 = 3, f'0 = 11. Then \(f'3 \) is equal to

\[
11.33
\]

44. If \(y = x \tan y \), then \(\frac{dy}{dx} \) is equal to

\[
\frac{\tan y}{x^2-y^2}
\]

45. The product of the lengths of subtangent and subnormal at any point \(x,y \) of a curve is
46. The equation of tangent to the curve

\[\left(\frac{x}{a} \right)^n + \left(\frac{y}{b} \right)^n = 2 \]

a x_a^2 \quad b y^2 \quad c a constant \quad d x

47. If \(\int_0^\infty \frac{x^2dx}{x^2+a^2(x^2+b^2)(x^2+c^2)} = \frac{\pi}{2(a+b)(b+c)(c+a)} \), then the value of \(\int_0^\infty \frac{1}{x^2+4(x^2+9)} \) is

\[a \frac{\pi}{60} \quad b \frac{\pi}{20} \quad c \frac{\pi}{40} \quad d \frac{\pi}{80} \]

48. \(\int e^{a \log x} + e^{x \log a} \) dx is equal to

\[a \frac{x^{a+1}}{a+1} + c \quad b \frac{x^{a+1}}{a+1} + \frac{a^x}{\log a} + c \quad c \quad d \frac{x^{a+1}}{a-1} + \frac{\log x}{a^x} + c \]

49. \(\int_0^a \frac{dx}{x+\sqrt{a^2-x^2}} \) is

\[(a) \frac{\pi}{4} \quad b \frac{\pi}{2} \quad c \frac{\pi}{4} \quad (c) \pi \]

50. If \(\int_{-1}^1 f(x) \) dx = 4 and \(\int_2^4 [3 - f(x) \) dx = 7, then the value of \(\int_{-1}^a f(x) \) dx is

\[a \quad -2 \quad b \quad 3 \quad c \quad 5 \quad d \quad 8 \]