1. **Assertion A** The radial probability distribution curves of 1s, 2p, 3d -orbitals are identical in shape.
 Reason R The number of nodal planes present in these orbitals are different.
 a) Both A and R are true and R is the correct explanation of A.
 b) Both A and R are true and R is not the correct explanation of A.
 c) A is true and R is false.
 d) A is false but R is true.

2. Which one of the following have largest mass?
 a) 5.6 L CO \(_2\) at STP
 b) 2 g H\(_2\) gas
 c) 6x10\(^{22}\) molecules of H\(_2\) gas
 d) 1.0 g -atom of He gas

3. The correct statement is
 a) most probable velocity of gas molecules increases with increase in temperature
 b) the fraction of gas molecules having most probable speed decreases with the rise in temperature
 c) at given temperature, the rms speed of the gas is maximum while most probable speed is maximum
 d) All the above

4. \[
\begin{align*}
 &\text{CH}_3\text{C}≡\text{C}\text{CH}_3 \\
\end{align*}
\]
 and are respectively.
 a) Trans-but-2-ene, cis-but-2-ene
 b) Cis-but-2-ene, trans-but-2-ene
c Tans-but-2-ene, trans-but-2-ene
d Cis-but-2-ene, cis-but-2-ene

5. \(\text{CH}_3-\text{CH}=\text{CH}_2+\text{HCl} \rightarrow \text{A} \)

The product A is

a \(\text{CH}_3-\text{CH}-\text{CH}_3 \)

b \(\text{CH}_3-\text{CH}_2-\text{Cl} \)

c \(\text{CH}_2-\text{CH}=\text{CH}_2 \)

d \(\text{CH}_3-\text{CH}=\text{CH}-\text{Cl} \)

6. Which of the following is not an anti ferromagnetic?

a \(\text{V}_2\text{O}_3 \)

b \(\text{Ti}_2\text{O}_3 \)

c \(\text{Fe}_2\text{O}_3 \)

d \(\text{Mn}_2\text{O}_3 \)

7. A compound of A and B crystallizes in a cubic lattice in which the A atoms occupy the lattice points at the corners of the cube. The B atoms occupy the centre of each fcc of the cube. The probable formula of the compound is

a \(\text{A}_3\text{B} \)

b \(\text{AB} \)

c \(\text{AB}_3 \)

d \(\text{AB}_2 \)

8. The average molecular mass of colloids can be determined by

a Tyndall effect

b Brownian movement

c Osmotic pressure

d flocculation

9. Cottrell smoke precipitator works on the principle of

a neutralization

b distribution law
c) Chélatier principle

d) Addition

10. The only non-metallic element exists in liquid state is

- a) F₂
- b) Br₂
- c) Cl₂
- d) Hg

11. Which of the following set of elements mostly occur as sulphide ores?

- a) Zn, Cu, Na
- b) Zn, Cu, P
- c) Fe, Al, Ti
- d) Cu, Ag, Au

12. The maximum amount of CaCO₃ that can be obtained from 4 g of calcium as per the sequence of reactions is

- a) 20 g
- b) 40 g
- c) 10 g
- d) 80 g

13. The standard Gibbs energy change for the formation of propane C₃H₈g at 298 K is [Given ∆H°ᵣ of propane is -103.85 kJ/mol;]

S°m C₃H₈g = 270.0 JK⁻¹ mol⁻¹;
S°m H₂g = 1309.68 JK⁻¹ mol⁻¹;
S°m C(graphite) = 5.79 JK⁻¹ mol⁻¹;]

- a) -12.34 kcal
- b) -10.98 kcal
- c) 12.354 kcal
- d) 10.98 kcal

14. One molal aqueous solution of PdCl₄·6H₂O has a freezing point 269.28 K. Assuming 100% ionization of complex, calculate the molecular formula of the complex.

[Kf for water = 1.86 K kg mol⁻¹] The salt is a hydrated complex.

- a) [PdH₂O₂Cl₄].4H₂O
- b) [PdH₂O₂Cl₃]Cl.3H₂O
- c) [PdH₂O₄Cl₄].Cl₂.2H₂O
- d) [PdH₂O₄]Cl₄

15. Standard reduction potential values for the electrodes are given below
\[\text{Mg}^{2+} + 2e^- \rightarrow \text{Mg}; \quad E_0 = -2.37 \text{ V} \]
\[\text{Zn}^{2+} + 2e^- \rightarrow \text{Zn}; \quad E_0 = -0.76 \text{ V} \]
\[\text{Fe}^{2+} + 2e^- \rightarrow \text{Fe}; \quad E_0 = -0.44 \text{ V} \]

Which of the following statements is correct?

a. Zinc will reduce Fe^{2+}

b. Zinc will reduce Mg^{2+}

c. Mg oxidizes Fe

d. Zinc oxidizes Fe

16. Which of the following is true regarding periodicity of elements?

a. Elements of same group are characterized by same valence shell electronic configuration.

b. The most electropositive elements are positioned on right hand side of the Modern periodic Table

c. On going from Li to F there would be decrease in ionization energy.

d. Reducing property of elements increases from Na to Cl in 3rd period elements.

17. Which of the following pairs have same EAN value?

a. \([\text{NiCO}_4], [\text{FeCN}_6]^{4-}\)

b. \([\text{NiCN}_2], [\text{FeH}_2\text{O}_6]^{2+}\)

c. \([\text{CoCN}_6]^{3-}, [\text{FeCN}_4]^{5+}\)

d. All the above

18. Relative stabilities of the following structures of \(\text{CH}_2 = \text{CH} = \text{CHO}\) are

In this decreasing order

\(\text{CH}_2 = \text{CH} = \text{C} = \text{H}\)

\|\]

\(\text{O}\)

\(\rightarrow \text{CH} = \text{C} = \text{H}\)
19. One mole of N₂ gas at 0.8 atm takes 38 s to diffuse through a pinhole, whereas one mole diffuse. MM of unknown gas is
 a 126 b 64 c 252 d 80

20. Which of the following sets of quantum numbers are not possible?
 I. n=0 l=0 m=0 s= + ½
 II. n=1 l=0 m=0 s= - ½
 III. n=3 l=2 m=-3, s= + ½
 IV. n=2 l=1 m=0 s= - ½
 a II and III b III and IV c I and III d I and IV

21. 2R, 3S – 2, 3-dihydroxybutanoic acid is
 a COOH b COOH
 HO H HO OH
 c H OH H OH
 CH₃ d COOH
 HO H HO OH
 HO H HO OH
22. \[
\text{CH}_2 \xrightarrow{\mathrm{O}_2 / \text{Ag}} \text{CH}_2 = \text{CH}_2 \xrightarrow{300^\circ \mathrm{C}} \text{X}
\]

I. X is a war gas
II. X is a thiol
III. Y is a heterocyclic, aromatic
IV. Y is an isomer of ethanol, correct statements are
 a I,IV
 b I,III,IV
 c I,III
 d I,II,III,IV

23. Regarding the mechanism of electrophilic substitution, the false statement is
 a rate limiting step is formation of arenium ion
 b arenium ion can stabilize through resonance
 c arenium ion is aromatic
 d initial step is generation of electrophile

24. Identify incorrect statements.
 I. Halo group activates benzene ring by mesomeric effect and destabilizes it by inductive effect
 II. Halo group is deactivating group
 III. Benzene is 10^4 times more reactive than nitrobenzene towards nucleophile
 IV. CF_3 is a strongly deactivating group
 a I,II,III
 b III only
 c II only
 d II,IV

25. Number of moles of hydrogen atoms required to get one mole of hydrazobenzene from nitrobenzene is
 a 10
 b 5
 c 8
 d 4
26. Fischer esterification is
 a nucleophilic substitution reaction
 b electrophilic substitution reaction
 c electrophilic addition reaction
 d free radical substitution reaction

27. Which of the following can be used in making floor polish?
 a Aniline
 b Benzaldehyde
 c Nitrobenzene
 d Benzene diazonium chloride

28. The standard electrode potentials of four elements P, Q, R and S are -2.65, -1.66, -0.80 and +0.86 V. The highest chemical activity will be exhibited by
 a Q b P
 c S d R

29. Ethylene glycol is used as coolant in car radiators, in order to prevent the solution from freezing at -0.3°C. The amount of ethylene glycol to be added to 5 kg of water is For water $K_f = 1.86 \text{ km}^{-1}$
 a 20 g b 50 g
 c 40 g d 30 g

30. Electrolysis of dilute aqueous NaCl solution was carried out by passing 10 mA current. The time required to liberate 0.01 moles of H₂ gas at the cathode is
 a 9.65×10^4 s b 19.3×10^4 s
 c 28.95×10^4 s d 38.6×10^4 s

31. The half-life period if the first order chemical reaction is 6.93 min. The time required for the completion of 99% of the chemical reaction will be $\log_2 = 0.3010$
 a 230.3 min b 23.03 min
 c 46.06 min d 460.6 min
32. Solutions A, B, C and D are respectively 0.1 M glucose, 0.05 M NaCl, 0.05 M BaCl₂ and 0.1 M AlF₃. Which one of the following pairs is isotonic?
 a. A and C
 b. B and C
 c. A and B
 d. A and D

33. pH of CH₃COOH and CH₃COONa buffer is 4.8. In which of the following conditions, the buffer capacity will be maximum?

 \[
 \begin{array}{c|c|c}
 \text{[CH₃COOH]} & \text{[CH₃COONa]} \\
 \hline
 a & 0.1 \text{ M,} & 0.2 \text{ M} \\
 b & 0.2 \text{ M} & 0.1 \text{ M} \\
 c & 0.34 \text{ M} & 0.34 \text{ M} \\
 d & 0.34 \text{ M} & 0.30 \text{ M} \\
 \end{array}
 \]

34. 50 mL of sample of hard water gave good lather with 6 mL of standard soap solution 1 mL soap solutions = 1 mg CaCO₃. If the hardness is only due to MgHCO₃₂, the weight of milk of lime required to remove the hardness completely from 100 kg of that sample of water is

 a. 17.8 g
 b. 8.9 g
 c. 178 g
 d. 89 g

35. 0.2 g of an organic compound gave 0.17 g NH₃ in kjeldhal’s method. The percentage weight of nitrogen in the given compound is

 a. 60%
 b. 80%
 c. 70%
 d. 90%

36. At constant temperature, the kinetic energy of a gas is independent on

 I. pressure
 II. Volume
 III. Density

 a. I,II
 b. II,III
 c. I,III
 d. I,II,III

37. 33.6 L of water vapour at STP are condensed to liquid state. The volume occupied by it is approximately

 a. 1 mL
 b. 18 mL
 c. 27 mL
 d. 127 mL
38. A open vessel containing air at 27° is heated to 127°C. The fraction of air originally present in the bottole that is expelled is
 a 50% b 25%
 c 33% d 40%

39. Which one is correct for \(k = \frac{Ae^{-E/a}}{RT} \)
 a \(E \) is energy of activation
 b \(R \) is Rydberg’s constant
 c \(K \) is equilibrium constant
 d \(A \) is adsorption

40. A reaction involving two different reactants can never be
 a unimolecular reaction
 b I order reaction
 c II order reaction
 d bimolecular reaction

41. The number of dπ - pπ bonds present respectively in SO₂, SO₃, ClO₄⁻ are
 a 0, 1, 2 b 1, 2, 3
 c 2, 3, 4 d 2, 3, 3

42. How many unit cells are present in a cubic shaped ideal crystal of NaCl of mass 1.0 g?
 a 1.28x10²¹ b 1.71x10²¹
 c 2.57x10²¹ d 5.14x10²¹

43. 20 mL of a sample of H₂O₂ gives 400 mL oxygen measured at NTP. The sample should be labeled as
 a 5 V H₂O₂
 b dil. H₂O₂
 c anhy. H₂O₂
 d 20 V H₂O₂

44. Identify the correctly matched lists
<table>
<thead>
<tr>
<th>List I</th>
<th>List II</th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
<td>Total number of lines in H-spectrum for a transition 5 -> 1</td>
</tr>
<tr>
<td>ii</td>
<td>Intensity of spectral line in the spectrum, as n value increases</td>
</tr>
<tr>
<td>iii</td>
<td>Band spectrum is due to</td>
</tr>
<tr>
<td>iv</td>
<td>The proof for the presence of energy levels in an atom</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

45. Between any two of following molecules, hydrogen bonding is not possible
 a) two primary amine molecules
 b) two secondary amine molecules
 c) two tertiary amine molecules
 d) two ammonia molecules

46. Which of the following elementys does not show +4 oxidation state?
 a) Zr
 b) Pt
 c) La
 d) Ti

47. The pH of saturated aqueous solution of NaClO₄ is 10. If the Kₛₚ of Ba(OH)₂ is 5x10⁻¹³, the concentration of ba²⁺ ions in the solution is
 a) 1 x 10⁻²
 b) 1 x 10⁻³
 c) 5 x 10⁻⁵
 d) 1 x 10⁻⁵

48. B₂-butyne

 A. A and B are geometrically isomers. ‘A’ is more symmetrically than ‘B’. ‘B’ has higher heat of hydrogenation than ‘A’. Then ‘X’ and ‘Y’ are respectively

 a) Li/Liq NH₃, H₂/Lindlar’s catalyst
b Li/Liq. NH$_3$, Na/Liq. NH$_3$

c H$_2$/Lindlar’s catalyst, Na/Liq.NH$_3$

d H$_2$/Pt, H$_2$/Lindlar’s catalyst

49. Pick the correct statements.

 I. The repeating unit of polyacetylene contains C=C bond
 II. Acetylene ozonide involves sp3 – sp3 overlap
 III. Alkyne with maximum number of acidic hydrogen atoms is ethyne
 IV. Ozonolysis product of acetylene product of acetylene is a dial

 a I, II, III b II, III, IV
 c I, II, III, IV d I, IV

50. Regarding urea the correct statements are A. it is a monoacidic base

 A. it is a monoacidic base
 B. dipole moment = 0
 C. C-N bondorder is 1
 D. it exhibits resonance

 a A, D b B, C, D
 c A, B, D d C, D