Q. 1 – Q. 10 carry one mark each & Q.11 - Q.20 carry two marks each.

Q.1 Which of the following is an oil soluble pigment present in fruits and vegetables?
 (A) Flavonoids (B) Carotenoids (C) Anthocyanins (D) Tannins

Q.2 Which of the following represent the group of saturated fatty acids?
 (A) Lauric, Myristic, Arachidic (B) Palmitic, Linoleic, Linolenic
 (C) Capric, Stearic & Oleic (D) Behenic, Caprylic, Arachidonic

Q.3 The anti-nutritional factor present in fava bean is
 (A) Gossypol (B) Curcine (C) Vicine (D) Cyanogen

Q.4 Which of the following is a Gram positive bacteria?
 (A) Listeria monocytogenes
 (B) Proteus vulgaris
 (C) Salmonella typhi
 (D) Shigella dysenteriae

Q.5 Irradiation carried out to reduce viable non-spore forming pathogenic bacteria using a dose between 3 to 10 kGy is
 (A) Radurization (B) Thermo radiation
 (C) Radappertization (D) Radicidation

Q.6 Identify the correct statement related to the viscosity of Newtonian fluids from the following.
 (A) It is not influenced by temperature
 (B) It increases with shearing rate
 (C) It decreases with shearing rate
 (D) It is not influenced by shearing rate
Q.7 Adult male Wistar rats were fed with a protein based diet. Total 150 g of protein was ingested per animal. If the average weight increased from 110 g to 350 g after the end of experiment, the Protein efficiency ratio of the given protein would be _______. (up to two decimal points).

Q.8 The initial moisture content of a food on wet basis is 50.76%. Its moisture content (%) on dry basis is _______.(up to two decimal points)

Q.9 The oxygen transmission rate through a 2.54 x 10^{-3} cm thick low density polyethylene film with air on one side and inert gas on the other side is 3.5 x 10^{-6} mL cm^{-2} s^{-1}. Oxygen partial pressure difference across the film is 0.21 atm. The permeability coefficient of the film to oxygen is _______ x 10^{-11} mL (STP) cm cm^{-2} s^{-1} (cm Hg)^{-1}.

Q.10 Ambient air at 30°C dry bulb temperature and 80% relative humidity was heated to a dry bulb temperature of 80°C in a heat exchanger by indirect heating. The amount of moisture gain (g kg^{-1} dry air) during the process would be _______.

Q. 11 – Q. 20 carry two marks each.

Q.11 Match the commodity in Group I with the bioactive constituent in Group II

<table>
<thead>
<tr>
<th>Group I</th>
<th>Group II</th>
</tr>
</thead>
<tbody>
<tr>
<td>P. Ginger</td>
<td>1. Lutein</td>
</tr>
<tr>
<td>Q. Green tea</td>
<td>2. Gingerol</td>
</tr>
<tr>
<td>R. Spinach</td>
<td>3. Curcumin</td>
</tr>
<tr>
<td>S. Turmeric</td>
<td>4. Epigallocatechin gallate</td>
</tr>
</tbody>
</table>

(A) P-1, Q-2, R-3, S-4
(B) P-2, Q-4, R-1, S-3
(C) P-4, Q-1, R-3, S-2
(D) P-2, Q-3, R-1, S-4

Q.12 Match the process operation in Group I with the separated constituent in Group II

<table>
<thead>
<tr>
<th>Group I</th>
<th>Group II</th>
</tr>
</thead>
<tbody>
<tr>
<td>P. Extraction</td>
<td>1. Phospholipids</td>
</tr>
<tr>
<td>Q. Degumming</td>
<td>2. Free fatty acids</td>
</tr>
<tr>
<td>R. Neutralization</td>
<td>3. Pigments</td>
</tr>
<tr>
<td>S. Bleaching</td>
<td>4. Crude oil</td>
</tr>
</tbody>
</table>

(A) P-3, Q-2, R-4, S-1
(B) P-4, Q-3, R-1, S-2
(C) P-4, Q-1, R-2, S-3
(D) P-4, Q-1, R-3, S-2
Q.13 Match the spoilage symptom in **Group I** with the causative microorganism in **Group II**

<table>
<thead>
<tr>
<th>Group I</th>
<th>Group II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q. Putrid swell in canned fish</td>
<td>2. Serretia marcescens</td>
</tr>
<tr>
<td>R. Red bread</td>
<td>3. Pseudomonas fluorescens</td>
</tr>
<tr>
<td>S. Yellow discoloration of meat</td>
<td>4. Clostridium sporogenes</td>
</tr>
</tbody>
</table>

(A) P-4, Q-3, R-2, S-1
(B) P-2, Q-1, R-4, S-3
(C) P-3, Q-4, R-2, S-1
(D) P-1, Q-4, R-3, S-2

Q.14 Match the fermented product in **Group I** with the base material in **Group II**

<table>
<thead>
<tr>
<th>Group I</th>
<th>Group II</th>
</tr>
</thead>
<tbody>
<tr>
<td>P. Sake</td>
<td>1. Milk</td>
</tr>
<tr>
<td>Q. Chhurpi</td>
<td>2. Cabbage</td>
</tr>
<tr>
<td>R. Natto</td>
<td>3. Rice</td>
</tr>
<tr>
<td>S. Sauerkraut</td>
<td>4. Soybean</td>
</tr>
</tbody>
</table>

(A) P-3, Q-1, R-4, S-2
(B) P-1, Q-3, R-4, S-2
(C) P-4, Q-1, R-3, S-2
(D) P-2, Q-4, R-1, S-3

Q.15 Match the operation in **Group I** with the process in **Group II**

<table>
<thead>
<tr>
<th>Group I</th>
<th>Group II</th>
</tr>
</thead>
<tbody>
<tr>
<td>P. Cleaning</td>
<td>1. Quality separation</td>
</tr>
<tr>
<td>Q. Grading</td>
<td>2. Clarification</td>
</tr>
<tr>
<td>R. Size reduction</td>
<td>3. Screening</td>
</tr>
<tr>
<td>S. Filtration</td>
<td>4. Comminution</td>
</tr>
</tbody>
</table>

(A) P-1, Q-3, R-4, S-2
(B) P-4, Q-1, R-3, S-2
(C) P-2, Q-4, R-1, S-3
(D) P-3, Q-1, R-4, S-2

Q.16 Out of 7 principles of HACCP system, 4 are listed below. Arrange these principles in the order in which they are applied.

(P) Conduct a hazard analysis
(Q) Establish monitoring process
(R) Establish critical limit
(S) Establish record keeping and documentation process

(A) P, R, Q, S
(B) Q, R, P, S
(C) P, Q, R, S
(D) R, S, P, Q
Q.17 Identify an example of a classical diffusional mass transfer process without involving heat, among the following.

(A) Drying of food grains
(B) Carbonation of beverages
(C) Distillation of alcohol
(D) Concentration of fruit juice

Q.18 For an enzyme catalyzed reaction $S \rightarrow P$, the kinetic parameters are:

$[S] = 40$ µM, $V_0 = 9.6$ µM s$^{-1}$ and $V_{\text{max}} = 12.0$ µM s$^{-1}$.

The K_m of the enzyme in µM will be ______.(up to one decimal points)

Q.19 A microbial sample taken at 10 AM contained 1×10^5 CFU/mL. The count reached to 1×10^{10} CFU/mL at 8 PM of the same day. The growth rate (h$^{-1}$) of the microorganism would be ______.(up to two decimal points)

Q.20 The rate of heat transfer per unit area from a metal plate is 1000 W m$^{-2}$. The surface temperature of the plate is 120°C and ambient temperature is 20°C. The convective heat transfer coefficient (W m$^{-2}$ °C$^{-1}$) using the Newton’s law of cooling will be ______.

END OF THE QUESTION PAPER