PAPER - 1: CHEMISTRY, MATHEMATICS & PHYSICS

Important Instructions:

1. Immediately fill in the particulars on this page of the Test Booklet with only Black Ball Point Pen provided in the examination hall.
2. The Answer Sheet is kept inside this Test Booklet. When you are directed to open the Test Booklet, take out the Answer Sheet and fill in the particulars carefully.
3. The test is of 3 hours duration.
4. The Test Booklet consists of 90 questions. The maximum marks are 360.
5. There are three parts in the question paper A, B, C consisting of Chemistry, Mathematics and Physics having 30 questions in each part of equal weightage. Each question is allotted 4 (four) marks for correct response.
6. Candidates will be awarded marks as stated above in instruction No. 5 for correct response of each question. 1/4 (one-fourth) marks of the total marks allotted to the question (i.e. 1 mark) will be deducted for indicating incorrect response of each question. No deduction from the total score will be made if no response is indicated for any item in the answer sheet.
7. There is only one correct response for each question. Filling up more than one response in any question will be treated as wrong response and marks for wrong response will be deducted accordingly as per instruction 6 above.
8. For writing particulars/marking responses on Side-1 and Side-2 of the Answer Sheet use only Black Ball Point Pen provided in the examination hall.
9. No candidate is allowed to carry any textual material, printed or written, bits of papers, paper, mobile phone, any electronic device, etc. except the Admit Card inside the examination room/hall.
10. Rough work is to be done on the space provided for this purpose in the Test Booklet only. This space is given at the bottom of each page and in four pages (Page 40-43) at the end of the booklet.
11. On completion of the test, the candidate must hand over the Answer Sheet to the Invigilator on duty in the Room/Hall. However, the candidates are allowed to take away this Test Booklet with them.
12. The CODE for this Booklet is C. Make sure that the CODE printed on Side-2 of the Answer Sheet is same as that on this Booklet. Also tally the serial number of the Test Booklet and Answer Sheet are the same as that on this booklet. In case of discrepancy, the candidate should immediately report the matter to the Invigilator for replacement of both the Test Booklet and the Answer Sheet.
13. Do not fold or make any stray mark on the Answer Sheet.

Test Booklet Code
पत्ता पूर्नितक संकेत

C
PART A – CHEMISTRY

1. Which of the following salts is the most basic in aqueous solution?
 (1) CH₃COOK
 (2) FeCl₃
 (3) Pb(CH₃COO)₂
 (4) Al(CN)₃

2. Which of the following compounds will be suitable for Kjeldahl’s method for nitrogen estimation?
 (1)
 (2)
 (3)
 (4)

3. Which of the following are Lewis acids?
 (1) AlCl₃ and SiCl₄
 (2) PH₃ and SiCl₄
 (3) BCl₃ and AlCl₃
 (4) PH₃ and BCl₃

C/Page 2 SPACE FOR ROUGH WORK / रक्कम के लिए जगह
4. Phenol on treatment with CO₂ in the presence of NaOH followed by acidification produces compound X as the major product. X on treatment with (CH₃CO)₂O in the presence of catalytic amount of H₂SO₄ produces:

\[
\begin{align*}
(1) & \quad \text{PhCO₂H} \\
(2) & \quad \text{PhCO(O)C(O)CH₃} \\
(3) & \quad \text{Ph(CO₂H)₂} \\
(4) & \quad \text{Ph(CO₂H)CH₃}
\end{align*}
\]

4. NaOH की स्थापना में फेनोल CO₂ के साथ अभिक्रिया करने तेलुस अभिन्न करने पर एक चित्रित X मुख्य उत्पाद के रूप में देखा है। H₂SO₄ की सत्रेशिकांत मात्रा में उपस्थित रहने में X को (CH₃CO)₂O के साथ अभिक्रिया करने पर प्राप्त होगा:

\[
\begin{align*}
(1) & \quad \text{PhCO₂H} \\
(2) & \quad \text{PhCO(O)C(O)CH₃} \\
(3) & \quad \text{Ph(CO₂H)₂} \\
(4) & \quad \text{Ph(CO₂H)CH₃}
\end{align*}
\]
5. An alkali is titrated against an acid with methyl orange as indicator, which of the following is a correct combination?

<table>
<thead>
<tr>
<th>Base</th>
<th>Acid</th>
<th>End point</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) Strong</td>
<td>Strong</td>
<td>Pinkish red to yellow</td>
</tr>
<tr>
<td>(2) Weak</td>
<td>Strong</td>
<td>Yellow to pinkish red</td>
</tr>
<tr>
<td>(3) Strong</td>
<td>Strong</td>
<td>Pink to colourless</td>
</tr>
<tr>
<td>(4) Weak</td>
<td>Strong</td>
<td>Colourless to pink</td>
</tr>
</tbody>
</table>

6. An aqueous solution contains 0.10 M \(\text{H}_2\text{S} \) and 0.20 M \(\text{HCl} \). If the equilibrium constants for the formation of \(\text{HS}^- \) from \(\text{H}_2\text{S} \) is \(1.0 \times 10^{-7} \) and that of \(\text{S}^2^- \) from \(\text{HS}^- \) ions is \(1.2 \times 10^{-13} \), then the concentration of \(\text{S}^2^- \) ions in aqueous solution is:

(1) \(3 \times 10^{-20} \)
(2) \(6 \times 10^{-21} \)
(3) \(5 \times 10^{-19} \)
(4) \(5 \times 10^{-8} \)

7. The combustion of benzene (l) gives \(\text{CO}_2(\text{g}) \) and \(\text{H}_2\text{O}(\text{l}) \). Given that the heat of combustion of benzene at constant volume is \(-3263.9 \text{ kJ mol}^{-1}\) at 25°C; heat of combustion (in kJ mol\(^{-1}\)) of benzene at constant pressure will be:

\(\text{R} = 8.314 \text{ JK}^{-1}\text{ mol}^{-1} \)

(1) \(-452.46\)
(2) \(3260\)
(3) \(-3267.6\)
(4) \(4152.6\)

5. एक झाड़ियाँ विचार में 0.10 M \(\text{H}_2\text{S} \) तथा 0.20 M \(\text{HCl} \) है। \(\text{H}_2\text{S} \) से \(\text{HS}^- \) बनने का सामरिक स्थान \(1.0 \times 10^{-7} \) हो तथा \(\text{HS}^- \) से \(\text{S}^2^- \) बनने का स्थियांक \(1.2 \times 10^{-13} \) हो तो झाड़ियाँ विचार में \(\text{S}^2^- \) की सामग्री होगी:

(1) \(3 \times 10^{-20} \)
(2) \(6 \times 10^{-21} \)
(3) \(5 \times 10^{-19} \)
(4) \(5 \times 10^{-8} \)

7. बैंजीन के दहन करने पर \(\text{CO}_2(\text{g}) \) तथा \(\text{H}_2\text{O}(\text{l}) \) होते है। स्फर आयतन पर बैंजीन(क्रं) की दहन : 25°C पर \(-3263.9 \text{ kJ mol}^{-1}\) है। स्फर दाब बैंजीन की दहन ऊष्मा (kJ mol\(^{-1}\) में) का होगा : \(\text{R} = 8.314 \text{ JK}^{-1}\text{ mol}^{-1} \)

(1) \(-452.46\)
(2) \(3260\)
(3) \(-3267.6\)
(4) \(4152.6\)
8. The compound that does not produce nitrogen gas by the thermal decomposition is:

 (1) (NH₄)₂Cr₂O₇
 (2) NH₄NO₂
 (3) (NH₄)₂SO₄
 (4) Ba(N₃)₂

9. How long (approximate) should water be electrolysed by passing through 100 amperes current so that the oxygen released can completely burn 27.66 g of diborane?

 (Atomic weight of B = 10.8 u)

 (1) 0.8 hours
 (2) 3.2 hours
 (3) 1.6 hours
 (4) 6.4 hours

10. Total number of lone pair of electrons in I⁻³ ion is:

 (1) 6
 (2) 9
 (3) 12
 (4) 3
11. When metal 'M' is treated with NaOH, a white gelatinous precipitate 'X' is obtained, which is soluble in excess of NaOH. Compound 'X' when heated strongly gives an oxide which is used in chromatography as an adsorbent. The metal 'M' is:

(1) Ca
(2) Al
(3) Fe
(4) Zn

12. According to molecular orbital theory, which of the following will not be a viable molecule?

(1) He_2^+
(2) H_2
(3) H_2^-
(4) He_2^{2+}

13. The increasing order of basicity of the following compounds is:

(a) \[\text{NH}_2 \]
(b) \[\text{NH} \]
(c) \[\text{NH}_2 \]
(d) \[\text{NHCH}_3 \]

(1) (b) < (a) < (c) < (d)
(2) (b) < (a) < (d) < (c)
(3) (d) < (b) < (a) < (c)
(4) (a) < (b) < (c) < (d)
14. Which type of ‘defect’ has the presence of cations in the interstitial sites?

(1) Vacancy defect
(2) Frenkel defect
(3) Metal deficiency defect
(4) Schottky defect

15. Which of the following compounds contain(s) no covalent bond(s)?

KCl, PH₃, O₂, B₂H₆, H₂SO₄

(1) KCl, H₂SO₄
(2) KCl
(3) KCl, B₂H₆
(4) KCl, B₂H₆, PH₃

16. The oxidation states of Cr in [Cr(H₂O)₆]Cl₃, [Cr(C₆H₅)₂] and K₂[Cr(CN)₂(O)₂(O₂)(NH₃)] respectively are:

(1) +3, +2, and +4
(2) +3, 0, and +6
(3) +3, 0, and +4
(4) +3, +4, and +6
17. Hydrogen peroxide oxidises $[\text{Fe(CN)}_6]^{4-}$ to $[\text{Fe(CN)}_6]^{3-}$ in acidic medium but reduces $[\text{Fe(CN)}_6]^{3-}$ to $[\text{Fe(CN)}_6]^{4-}$ in alkaline medium. The other products formed are, respectively:

1. $(\text{H}_2\text{O} + \text{O}_2)$ and $(\text{H}_2\text{O} + \text{OH}^-)$
2. H_2O and $(\text{H}_2\text{O} + \text{O}_2)$
3. H_2O and $(\text{H}_2\text{O} + \text{OH}^-)$
4. $(\text{H}_2\text{O} + \text{O}_2)$ and H_2O

18. Glucose on prolonged heating with HI gives:

1. 1-Hexene
2. Hexanoic acid
3. 6-iodohexanal
4. n-Hexane

19. The predominant form of histamine present in human blood is (pK_{a1} Histidine = 6.0)

$$\text{(1)} \quad \text{N}^+ \hspace{1cm} \text{N}^+ \hspace{1cm} \text{NH}_3$$

$$\text{(2)} \quad \text{N}^+ \hspace{1cm} \text{N}^+ \hspace{1cm} \text{NH}_2$$

$$\text{(3)} \quad \text{N}^+ \hspace{1cm} \text{N}^+ \hspace{1cm} \text{NH}_3$$

$$\text{(4)} \quad \text{N}^+ \hspace{1cm} \text{NH}_2$$

17. हाइड्रोजन पराक्साइड अम्लीय माध्यम में $[\text{Fe(CN)}_6]^{4-}$ को $[\text{Fe(CN)}_6]^{3-}$ में उपचारित करता है परन्तु शासीय माध्यम में $[\text{Fe(CN)}_6]^{3-}$ को $[\text{Fe(CN)}_6]^{4-}$ में उपचारित करता है। अन्य बने वाले उत्पाद क्रमशः हैं:

1. $(\text{H}_2\text{O} + \text{O}_2)$ तथा $(\text{H}_2\text{O} + \text{OH}^-)$
2. H_2O तथा $(\text{H}_2\text{O} + \text{O}_2)$
3. H_2O तथा $(\text{H}_2\text{O} + \text{OH}^-)$
4. $(\text{H}_2\text{O} + \text{O}_2)$ तथा H_2O

18. ग्लुकोज को HI के साथ लम्बे समय तक गर्म करने पर प्राप्त होता है:

1. 1-हेक्सीन
2. हेक्सानॉइड एसिड
3. 6-आयडोहेक्सेनल
4. n-हेक्सेन

19. मानव रक्त में उपस्थित हिस्टामिन का प्रमुख रूप H^+ (pK_{a1} हिस्टामिन = 6.0)
20. The recommended concentration of fluoride ion in drinking water is up to 1 ppm as fluoride ion is required to make teeth enamel harder by converting \([3\text{Ca}_3(\text{PO}_4)_2\cdot\text{Ca(OH)}_2] \) to:

\[
\begin{align*}
(1) & \quad [3(\text{CaF}_2)\cdot\text{Ca(OH)}_2] \\
(2) & \quad [3\text{Ca}_3(\text{PO}_4)_2\cdot\text{CaF}_2] \\
(3) & \quad [3(\text{Ca(OH)}_2)\cdot\text{CaF}_2] \\
(4) & \quad [\text{CaF}_2]
\end{align*}
\]

21. Consider the following reaction and statements:

\[[\text{Co(NH}_3)_4\text{Br}_2]^+ + \text{Br}^- \rightarrow [\text{Co(NH}_3)_3\text{Br}_3] + \text{NH}_3 \]

(I) Two isomers are produced if the reactant complex ion is a cis-isomer.

(II) Two isomers are produced if the reactant complex ion is a trans-isomer.

(III) Only one isomer is produced if the reactant complex ion is a trans-isomer.

(IV) Only one isomer is produced if the reactant complex ion is a cis-isomer.

The correct statements are:

(1) (I) and (III)
(2) (II) and (IV)
(3) (II) and (IV)
(4) (I) and (II)
22. The trans-alkenes are formed by the reduction of alkynes with:
(1) NaBH₄
(2) Na liq. NH₃
(3) Sn - HCl
(4) H₂ - Pd/C, BaSO₄

23. The ratio of mass percent of C and H of an organic compound (CₓHᵧO₂) is 6 : 1. If one molecule of the above compound (CₓHᵧO₂) contains half as much oxygen as required to burn one molecule of compound CₓHᵧ completely to CO₂ and H₂O. The empirical formula of compound CₓHₓO₂ is:
(1) C₂H₄O
(2) C₃H₆O₂
(3) C₂H₅O₂
(4) C₃H₆O₃

24. Phenol reacts with methyl chloroformate in the presence of NaOH to form product A. A reacts with Br₂ to form product B. A and B are respectively:
(1)
(2)
(3)
(4)

22. निम्न में से किन ऐल्काइनों के अपवर्तन द्वारा ट्रांस-एल्कीन बनते हैं?
(1) NaBH₄
(2) Na liq. NH₃
(3) Sn - HCl
(4) H₂ - Pd/C, BaSO₄

23. एक कार्बनिक यौगिक (CₓHₓO₂) में C तथा H के संतुलित प्रभावों का अनुपात 6 : 1 है। यदि उपरोक्त यौगिक के एक आणू में ऑक्सीजन की मात्रा, यौगिक CₓHᵧ के एक आणू को पूर्ण रूप से जलाकर CO₂ तथा H₂O में बदलने वाली ऑक्सीजन की मात्रा की आधी है। यौगिक CₓHₓO₂ का मूलानुपत्ति सूत्र है:
(1) C₂H₄O
(2) C₃H₆O₂
(3) C₂H₅O₂
(4) C₃H₆O₃

24. NaOH की उपवर्तन में फेनोल, मेथिल च्लोरोफोर्मिट से अभिक्रिया करके A उत्पाद बनता है। A, Br के साथ अभिक्रिया करके उत्पाद B देता है। A तथा B क्रम: हैं:
(1) तथा
(2) तथा
(3) तथा
(4) तथा

C/Page 10 SPACE FOR ROUGH WORK / रंग कार्य के लिए जमाह
25. The major product of the following reaction is:

\[\text{Br} \xrightarrow{\text{NaOMe, MeOH}} \]

(1)
(2)
(3)
(4)

26. Which of the following lines correctly show the temperature dependence of equilibrium constant, \(K \), for an exothermic reaction?

\[\ln K \] vs \[\frac{1}{T(K)} \]

(1) B and C
(2) C and D
(3) A and D
(4) A and B
27. The major product formed in the following reaction is:

\[
\begin{align*}
\text{HI} & \to \text{Heat} \\
\end{align*}
\]

(1) \(\text{I} \)
(2) \(\text{OH} \)
(3) \(\text{OH} \)
(4) \(\text{OH} \)

28. An aqueous solution contains an unknown concentration of \(\text{Ba}^{2+} \). When 50 mL of a 1 M solution of \(\text{Na}_2\text{SO}_4 \) is added, \(\text{BaSO}_4 \) just begins to precipitate. The final volume is 500 mL. The solubility product of \(\text{BaSO}_4 \) is \(1 \times 10^{-10} \). What is the original concentration of \(\text{Ba}^{2+} \)?

(1) \(2 \times 10^{-9} \) M
(2) \(1.1 \times 10^{-9} \) M
(3) \(1.0 \times 10^{-10} \) M
(4) \(5 \times 10^{-9} \) M
29. At 518°C, the rate of decomposition of a sample of gaseous acetaldehyde, initially at a pressure of 363 Torr, was 1.00 Torr s⁻¹ when 5% had reacted and 0.5 Torr s⁻¹ when 33% had reacted. The order of the reaction is:

- (1) 3
- (2) 1
- (3) 0
- (4) 2

30. For 1 molal aqueous solution of the following compounds, which one will show the highest freezing point?

- (1) \([\text{Co(H}_2\text{O})_5\text{Cl}]\text{Cl}_2\cdot\text{H}_2\text{O}\)
- (2) \([\text{Co(H}_2\text{O})_4\text{Cl}_2]\text{Cl}_2\cdot\text{H}_2\text{O}\)
- (3) \([\text{Co(H}_2\text{O})_3\text{Cl}_3]\cdot\text{H}_2\text{O}\)
- (4) \([\text{Co(H}_2\text{O})_6\text{Cl}_3]...

C/Page 13

SPACES FOR ROUGH WORK
31. The integral

\[\int \frac{\sin^2 x \cos^2 x}{(\sin^5 x + \cos^3 x \sin^2 x + \sin^3 x \cos^2 x + \cos^5 x)^2} \, dx \]

is equal to:

1. \(\frac{-1}{3(1 + \tan^3 x)} + C \)
2. \(\frac{1}{1 + \cot^3 x} + C \)
3. \(\frac{-1}{1 + \cot^3 x} + C \)
4. \(\frac{1}{3(1 + \tan^3 x)} + C \)

(where \(C \) is a constant of integration)

32. Tangents are drawn to the hyperbola \(4x^2 - y^2 = 36 \) at the points P and Q. If these tangents intersect at the point \(T(0, 3) \) then the area (in sq. units) of \(\Delta PTQ \) is:

1. \(54\sqrt{3} \)
2. \(60\sqrt{3} \)
3. \(36\sqrt{5} \)
4. \(45\sqrt{5} \)
33. Tangent and normal are drawn at
P(16, 16) on the parabola \(y^2=16x\), which intersect the axis of the parabola at A and B, respectively. If C is the centre of the circle through the points P, A and B and \(\angle CPB=0\), then a value of \(\tan \theta\) is:

\[
\begin{align*}
(1) & \quad 2 \\
(2) & \quad 3 \\
(3) & \quad 4/3 \\
(4) & \quad 1/2
\end{align*}
\]

34. Let \(\vec{u}\) be a vector coplanar with the vectors \(\vec{a} = 2\hat{i} + 3\hat{j} - \hat{k}\) and \(\vec{b} = \hat{j} + \hat{k}\). If \(\vec{u}\)
is perpendicular to \(\vec{a}\) and \(\vec{u} \cdot \vec{b} = 24\), then \(|\vec{u}|^2\) is equal to:

\[
\begin{align*}
(1) & \quad 315 \\
(2) & \quad 256 \\
(3) & \quad 84 \\
(4) & \quad 336
\end{align*}
\]

35. If \(\alpha, \beta \in \mathbb{C}\) are the distinct roots, of the equation \(x^2-x+1=0\), then \(\alpha^{101} + \beta^{107}\) is equal to:

\[
\begin{align*}
(1) & \quad 0 \\
(2) & \quad 1 \\
(3) & \quad 2 \\
(4) & \quad -1
\end{align*}
\]
36. Let $g(x) = \cos x^2$, $f(x) = \sqrt{x}$, and
\(\alpha, \beta \) \((\alpha < \beta)\) be the roots of the quadratic
equation \(18x^2 - 9\pi x + \pi^2 = 0\). Then the
area (in sq. units) bounded by the curve
y = \((g \circ f)(x)\) and the lines \(x = \alpha, x = \beta\) and
y = 0, is:

(1) \(\frac{1}{2}(\sqrt{3} + 1)\)

(2) \(\frac{1}{2}(\sqrt{3} - \sqrt{2})\)

(3) \(\frac{1}{2}(\sqrt{2} - 1)\)

(4) \(\frac{1}{2}(\sqrt{3} - 1)\)

37. The sum of the co-efficients of all odd
degree terms in the expansion of
\((x + \sqrt{x^3 - 1})^5 + (x - \sqrt{x^3 - 1})^5, (x > 1)\)
is:

(1) 0

(2) 1

(3) 2

(4) -1

36. माना \(g(x) = \cos x^2, f(x) = \sqrt{x}, \) तथा
\(\alpha, \beta (\alpha < \beta)\) समीकरण \(18x^2 - 9\pi x + \pi^2 = 0\)
के मूल \(x = \alpha, x = \beta\) तथा \(y = 0\) द्वारा
परिभाषित क्षेत्र का क्षेत्रफल (परिमी
हकायतों में) है:

(1) \(\frac{1}{2}(\sqrt{3} + 1)\)

(2) \(\frac{1}{2}(\sqrt{3} - \sqrt{2})\)

(3) \(\frac{1}{2}(\sqrt{2} - 1)\)

(4) \(\frac{1}{2}(\sqrt{3} - 1)\)

37. \((x + \sqrt{x^3 - 1})^5 + (x - \sqrt{x^3 - 1})^5, (x > 1)\)
के प्रसार में सभी विषम पदों वाले पदों के
गुणाकों का
योग है:

(1) 0

(2) 1

(3) 2

(4) -1
38. Let \(a_1, a_2, a_3, \ldots, a_{49} \) be in A.P. such that \(\sum_{k=0}^{12} a_{4k+1} = 416 \) and \(a_9 + a_{43} = 66 \). If \(a_1^2 + a_2^2 + \ldots + a_{17}^2 = 140 \text{ m} \), then \(m \) is equal to:

(1) 68
(2) 34
(3) 33
(4) 66

39. If \(\sum_{i=1}^{9} (x_i - 5) = 9 \) and \(\sum_{i=1}^{9} (x_i - 5)^2 = 45 \), then the standard deviation of the 9 items \(x_1, x_2, \ldots, x_9 \) is:

(1) 4
(2) 2
(3) 3
(4) 9

40. PQR is a triangular park with \(PQ = PR = 200 \text{ m} \). A T.V. tower stands at the mid-point of QR. If the angles of elevation of the top of the tower at P, Q and R are respectively 45°, 30° and 30°, then the height of the tower (in m) is:

(1) 50
(2) \(100\sqrt{3} \)
(3) \(50\sqrt{2} \)
(4) 100
41. Two sets A and B are as under:

\[A = \{ (a, b) \in \mathbb{R} \times \mathbb{R} : |a - 5| < 1 \text{ and } |b - 5| < 1 \} ; \]

\[B = \{ (a, b) \in \mathbb{R} \times \mathbb{R} : 4(a - 6)^2 + 9(b - 5)^2 \leq 36 \} . \]

Then:

(1) \(A \subseteq B \)

(2) \(A \cap B = \emptyset \) (an empty set)

(3) neither \(A \subset B \) nor \(B \subset A \)

(4) \(B \subset A \)

42. From 6 different novels and 3 different dictionaries, 4 novels and 1 dictionary are to be selected and arranged in a row on a shelf so that the dictionary is always in the middle. The number of such arrangements is:

(1) less than 500

(2) at least 500 but less than 750

(3) at least 750 but less than 1000

(4) at least 1000

43. Let \(f(x) = x^2 + \frac{1}{x^2} \) and \(g(x) = x - \frac{1}{x} \), \(x \in \mathbb{R} \setminus \{-1, 0, 1\} \). If \(h(x) = \frac{f(x)}{g(x)} \), then the local minimum value of \(h(x) \) is:

(1) -3

(2) \(-2\sqrt{2}\)

(3) \(2\sqrt{2}\)

(4) 3
44. For each $t \in \mathbb{R}$, let $[t]$ be the greatest integer less than or equal to t. Then

$$\lim_{x \to 0^+} x \left(\frac{1}{x} + \frac{2}{x} + \ldots + \frac{15}{x} \right)$$

(1) is equal to 15.

(2) is equal to 120.

(3) does not exist (in \mathbb{R}).

(4) is equal to 0.

45. The value of $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{\sin^2 x}{1 + 2^x} \, dx$ is:

(1) $\frac{\pi}{2}$

(2) 4π

(3) $\frac{\pi}{4}$

(4) $\frac{\pi}{8}$
46. A bag contains 4 red and 6 black balls. A ball is drawn at random from the bag, its colour is observed and this ball along with two additional balls of the same colour are returned to the bag. If now a ball is drawn at random from the bag, then the probability that this drawn ball is red, is:

(1) \(\frac{2}{5} \)
(2) \(\frac{1}{5} \)
(3) \(\frac{3}{4} \)
(4) \(\frac{3}{10} \)

47. The length of the projection of the line segment joining the points (5, -1, 4) and (4, -1, 3) on the plane, \(x + y + z = 7 \) is:

(1) \(\frac{2}{3} \)
(2) \(\frac{1}{3} \)
(3) \(\frac{2}{3} \)
(4) \(\frac{2}{3} \)
48. If sum of all the solutions of the equation

\[8 \cos x \left(\cos \left(\frac{\pi}{6} + x \right) \cos \left(\frac{\pi}{6} - x \right) - \frac{1}{2} \right) = 1 \]

in \([0, \pi]\) is \(k\pi\), then \(k\) is equal to:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>(\frac{13}{9})</td>
</tr>
<tr>
<td>(2)</td>
<td>(\frac{8}{9})</td>
</tr>
<tr>
<td>(3)</td>
<td>(\frac{20}{9})</td>
</tr>
<tr>
<td>(4)</td>
<td>(\frac{2}{3})</td>
</tr>
</tbody>
</table>

49. A straight line through a fixed point \((2, 3)\) intersects the coordinate axes at distinct points \(P\) and \(Q\). If \(O\) is the origin and the rectangle \(OPRQ\) is completed, then the locus of \(R\) is:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>(2x + 3y = xy)</td>
</tr>
<tr>
<td>(2)</td>
<td>(3x + 2y = xy)</td>
</tr>
<tr>
<td>(3)</td>
<td>(3x + 2y = 6xy)</td>
</tr>
<tr>
<td>(4)</td>
<td>(3x + 2y = 6)</td>
</tr>
</tbody>
</table>
50. Let A be the sum of the first 20 terms and B be the sum of the first 40 terms of the series

$$1^2 + 2^2 + 3^2 + 4^2 + 5^2 + 6^2 + \ldots$$

If $B - 2A = 100\lambda$, then λ is equal to:

1. 248
2. 464
3. 496
4. 232

51. If the curves $y^2 = 6x$, $9x^2 + y^2 = 16$ intersect each other at right angles, then the value of b is:

1. $\frac{7}{2}$
2. 4
3. $\frac{9}{2}$
4. 6

52. Let the orthocentre and centroid of a triangle be $A(-3, 5)$ and $B(3, 3)$ respectively. If C is the circumcentre of this triangle, then the radius of the circle having line segment AC as diameter, is:

1. $2\sqrt{10}$
2. $\frac{3\sqrt{5}}{2}$
3. $\frac{3\sqrt{5}}{2}$
4. $\sqrt{10}$

50. माना श्रेणी $1^2 + 2^2 + 3^2 + 4^2 + 5^2 + 6^2 + \ldots$ के प्रथम 20 पदों का योग A है तथा प्रथम 40 पदों का योग B है।

यदि $B - 2A = 100\lambda$, तो λ बराबर है :

1. 248
2. 464
3. 496
4. 232

51. यदि चक्र $y^2 = 6x$ तथा $9x^2 + y^2 = 16$ समकोण पर प्रतिच्छेद करते हैं, तो b का मान है :

1. $\frac{7}{2}$
2. 4
3. $\frac{9}{2}$
4. 6

52. माना एक त्रिभुज का लंब केंद्र तथा केंद्रक क्रमशः $A(-3, 5)$ तथा $B(3, 3)$ हैं। यदि इस त्रिभुज का परिकेंद्र C है, तो रेखाखंड AC को व्यास मान कर बनाए जाने वाले वृत्त की त्रिज्या है :

1. $2\sqrt{10}$
2. $\frac{3\sqrt{5}}{2}$
3. $\frac{3\sqrt{5}}{2}$
4. $\sqrt{10}$
53. Let $S = \{ t \in \mathbb{R} : f(t) = |x - \pi| \cdot (e^{ix} - 1) \sin|x| \}$ is not differentiable at t. Then the set S is equal to:

1. \{0\}
2. \{\pi\}
3. \{0, \pi\}
4. \emptyset (an empty set)

54. If
\[
\begin{vmatrix}
 x-4 & 2x & 2x \\
 2x & x-4 & 2x \\
 2x & 2x & x-4
\end{vmatrix} = (A + Bx)(x - A)^2,
\]
then the ordered pair (A, B) is equal to:

1. $(-4, 3)$
2. $(-4, 5)$
3. $(4, 5)$
4. $(-4, -5)$

55. The Boolean expression
\[\neg(p \lor q) \lor (\neg p \land q)\] is equivalent to:

1. p
2. q
3. $\neg q$
4. $\neg p$

53. माना $S = \{ t \in \mathbb{R} : f(t) = |x - \pi| \cdot (e^{ix} - 1) \sin|x| \}$ जो t पर अवकलनीय नहीं है, तो समुच्चय S विस्तार है:

1. \{0\}
2. \{\pi\}
3. \{0, \pi\}
4. \emptyset (एक अमित समुच्चय)

54. जब
\[
\begin{vmatrix}
 x-4 & 2x & 2x \\
 2x & x-4 & 2x \\
 2x & 2x & x-4
\end{vmatrix} = (A + Bx)(x - A)^2
\]
तो केन्द्रित युग्म (A, B) विस्तार है:

1. $(-4, 3)$
2. $(-4, 5)$
3. $(4, 5)$
4. $(-4, -5)$

55. बूल के व्यंजक
\[\neg(p \lor q) \lor (\neg p \land q)\] के समतुल्य है:

1. p
2. q
3. $\neg q$
4. $\neg p$
56. If the system of linear equations
\[x + ky + 3z = 0 \\
3x + ky - 2z = 0 \\
2x + 4y - 3z = 0 \]
has a non-zero solution \((x, y, z)\), then \(\frac{xz}{y^2}\) is equal to:

(1) 10
(2) -30
(3) 30
(4) -10

57. Let \(S = \{x \in \mathbb{R} : x \geq 0\}\) and
\[2\sqrt{x - 3} + \sqrt{x(\sqrt{x} - 6)} + 6 = 0 \]
Then \(S\):

(1) contains exactly one element.
(2) contains exactly two elements.
(3) contains exactly four elements.
(4) is an empty set.

58. If the tangent at \((1, 7)\) to the curve
\[x^2 = y - 6 \]
touches the circle
\[x^2 + y^2 + 16x + 12y + c = 0 \]
then the value of \(c\) is:

(1) 185
(2) 85
(3) 95
(4) 195
Let $y = y(x)$ be the solution of the differential equation

$$\sin x \frac{dy}{dx} + y \cos x = 4x, \ x \in (0, \pi).$$

If $y\left(\frac{\pi}{2}\right) = 0$, then $y\left(\frac{\pi}{6}\right)$ is equal to:

1. $\frac{-8}{9\sqrt{3}} \pi^2$
2. $\frac{-8}{9} \pi^2$
3. $\frac{-4}{9} \pi^2$
4. $\frac{4}{9\sqrt{3}} \pi^2$

If L_1 is the line of intersection of the planes $2x - 2y + 3z - 2 = 0$, $x - y + z + 1 = 0$ and L_2 is the line of intersection of the planes $x + 2y - z - 3 = 0$, $3x - y + 2z - 1 = 0$, then the distance of the origin from the plane, containing the lines L_1 and L_2, is:

1. $\frac{1}{3\sqrt{2}}$
2. $\frac{1}{2\sqrt{2}}$
3. $\frac{1}{\sqrt{2}}$
4. $\frac{1}{4\sqrt{2}}$

If $\sin \frac{dy}{dx} + y \cos x = 4x, \ x \in (0, \pi)$, then

$$y = y(x)$$

is a solution of the equation.

If $y\left(\frac{\pi}{2}\right) = 0$, then $y\left(\frac{\pi}{6}\right)$ is:

1. $\frac{-8}{9\sqrt{3}} \pi^2$
2. $\frac{-8}{9} \pi^2$
3. $\frac{-4}{9} \pi^2$
4. $\frac{4}{9\sqrt{3}} \pi^2$

If $2x - 2y + 3z - 2 = 0$, $x - y + z + 1 = 0$, $x + 2y - z - 3 = 0$, $3x - y + 2z - 1 = 0$ are planes with respective lines L_1 and L_2, then the distance of the origin from the plane, containing the lines L_1 and L_2, is:

1. $\frac{1}{3\sqrt{2}}$
2. $\frac{1}{2\sqrt{2}}$
3. $\frac{1}{\sqrt{2}}$
4. $\frac{1}{4\sqrt{2}}$
61. The angular width of the central maximum in a single slit diffraction pattern is 60°. The width of the slit is 1 μm. The slit is illuminated by monochromatic plane waves. If another slit of same width is made near it, Young's fringes can be observed on a screen placed at a distance 50 cm from the slits. If the observed fringe width is 1 cm, what is slit separation distance?

(i.e. distance between the centres of each slit.)

(1) 50 μm
(2) 75 μm
(3) 100 μm
(4) 25 μm

62. An electron from various excited states of hydrogen atom emit radiation to come to the ground state. Let \(\lambda_n', \lambda_g \) be the de Broglie wavelength of the electron in the \(n \)th state and the ground state respectively. Let \(\Lambda_n \) be the wavelength of the emitted photon in the transition from the \(n \)th state to the ground state. For large \(n \), \(A, B \) are constants

(1) \(\Lambda_n = A + B \lambda_n \)
(2) \(\Lambda_n^2 = A + B \lambda_n^2 \)
(3) \(\Lambda_n^2 = \lambda \)
(4) \(\Lambda_n = A + \frac{B}{\lambda_n^2} \)
63. The reading of the ammeter for a silicon diode in the given circuit is:

\[\text{Circuit Diagram} \]

(1) 15 mA
(2) 11.5 mA
(3) 13.5 mA
(4) 0

64. The density of a material in the shape of a cube is determined by measuring three sides of the cube and its mass. If the relative errors in measuring the mass and length are respectively 1.5% and 1%, the maximum error in determining the density is:

(1) 3.5%
(2) 4.5%
(3) 6%
(4) 2.5%
65. An electron, a proton and an alpha particle having the same kinetic energy are moving in circular orbits of radii \(r_e, r_p, r_\alpha \) respectively in a uniform magnetic field \(B \). The relation between \(r_e, r_p, r_\alpha \) is:

1. \(r_e < r_p = r_\alpha \)
2. \(r_e < r_p < r_\alpha \)
3. \(r_e < r_\alpha < r_p \)
4. \(r_e > r_p = r_\alpha \)

66. Three concentric metal shells A, B and C of respective radii \(a, b, c \) \((a < b < c)\) have surface charge densities \(+\sigma, -\sigma \) and \(+\sigma\) respectively. The potential of shell B is:

1. \[
\frac{\sigma}{\varepsilon_0} \left[\frac{a^2 - b^2}{b} + c \right]
\]
2. \[
\frac{\sigma}{\varepsilon_0} \left[\frac{b^2 - c^2}{b} + a \right]
\]
3. \[
\frac{\sigma}{\varepsilon_0} \left[\frac{b^2 - c^2}{c} + a \right]
\]
4. \[
\frac{\sigma}{\varepsilon_0} \left[\frac{a^2 - b^2}{a} + c \right]
\]
67. Two masses $m_1 = 5 \text{ kg}$ and $m_2 = 10 \text{ kg}$, connected by an inextensible string over a frictionless pulley, are moving as shown in the figure. The coefficient of friction of horizontal surface is 0.15. The minimum weight m that should be put on top of m_2 to stop the motion is:

(1) 27.3 kg
(2) 43.3 kg
(3) 10.3 kg
(4) 18.3 kg

68. A particle is moving in a circular path of radius a under the action of an attractive potential $U = -\frac{k}{2r^2}$. Its total energy is:

(1) $\frac{k}{2a^2}$
(2) Zero
(3) $\frac{3k}{2a^2}$
(4) $\frac{k}{4a^2}$
69. A parallel plate capacitor of capacitance 90 pF is connected to a battery of emf 20 V. If a dielectric material of dielectric constant \(K = \frac{5}{3} \) is inserted between the plates, the magnitude of the induced charge will be:

1. 0.3 nC
2. 2.4 nC
3. 0.9 nC
4. 1.2 nC

70. A silver atom in a solid oscillates in simple harmonic motion in some direction with a frequency of \(10^{12} \) sec\(^{-1}\). What is the force constant of the bonds connecting one atom with the other? (Mole wt. of silver = 108 and Avagadro number = \(6.02 \times 10^{23} \) gm mole\(^{-1}\))

1. 7.1 N/m
2. 2.2 N/m
3. 5.5 N/m
4. 6.4 N/m

71. It is found that if a neutron suffers an elastic collinear collision with deuterium at rest, fractional loss of its energy is \(p_d \); while for its similar collision with carbon nucleus at rest, fractional loss of energy is \(p_c \). The values of \(p_d \) and \(p_c \) are respectively:

1. (28, -89)
2. (0, 0)
3. (0, 1)
4. (-89, 28)
72. The dipole moment of a circular loop carrying a current I, is \(m \) and the magnetic field at the centre of the loop is \(B_1 \). When the dipole moment is doubled by keeping the current constant, the magnetic field at the centre of the loop is \(B_2 \). The ratio \(\frac{B_1}{B_2} \) is:

(1) \(\sqrt{3} \)

(2) \(\sqrt{2} \)

(3) \(\frac{1}{\sqrt{2}} \)

(4) 2

73. In a potentiometer experiment, it is found that no current passes through the galvanometer when the terminals of the cell are connected across 52 cm of the potentiometer wire. If the cell is shunted by a resistance of 5 \(\Omega \), a balance is found when the cell is connected across 40 cm of the wire. Find the internal resistance of the cell.

(1) 1.5 \(\Omega \)

(2) 2 \(\Omega \)

(3) 2.5 \(\Omega \)

(4) 1 \(\Omega \)
74. A telephonic communication service is working at carrier frequency of 10 GHz. Only 10% of it is utilized for transmission. How many telephonic channels can be transmitted simultaneously if each channel requires a bandwidth of 5 kHz?

(1) 2×10^4
(2) 2×10^5
(3) 2×10^6
(4) 2×10^3

75. Unpolarized light of intensity I passes through an ideal polarizer A. Another identical polarizer B is placed behind A. The intensity of light beyond B is found to be $\frac{I}{2}$. Now another identical polarizer C is placed between A and B. The intensity beyond B is now found to be $\frac{I}{8}$. The angle between polarizer A and C is:

(1) 30°
(2) 45°
(3) 60°
(4) 0°

74. एक टेलिफोन संचार सेवा, वाहक आवृत्ति 10 GHz पर काम करती है। इसका केवल 10% संचार के लिए उपयोग किया जाता है। यदि प्रत्येक चैनल को बैंड चैन्ड 5 kHz हो तो एक साथ कितने टेलिफोनिक चैनल संचारित किये जा सकते हैं?

(1) 2×10^4
(2) 2×10^5
(3) 2×10^6
(4) 2×10^3

75. तीव्रता I का अनूठा प्रकाश का एक आड़ा पोलाराइज्ड A से गुजरता है। इसी तरह का एक और पोलाराइज्ड B को पोलाराइज्ड A के पीछे रखा गया है। पोलाराइज्ड B के पश्चात प्रकाश की तीव्रता $\frac{1}{2}$ पाइये जाती है। अब एक और उसी तरह के पोलाराइज्ड C को A और B के बीच रखा जाता है जिससे B के पश्चात तीव्रता $\frac{1}{8}$ पाइये जाती है। पोलाराइज्ड A व C के बीच का कोण होगा:

(1) 30°
(2) 45°
(3) 60°
(4) 0°
76. On interchanging the resistances, the balance point of a meter bridge shifts to the left by 10 cm. The resistance of their series combination is 1 kΩ. How much was the resistance on the left slot before interchanging the resistances?

(1) 505 Ω
(2) 550 Ω
(3) 910 Ω
(4) 990 Ω

77. From a uniform circular disc of radius R and mass 9 M, a small disc of radius \(\frac{R}{3} \) is removed as shown in the figure. The moment of inertia of the remaining disc about an axis perpendicular to the plane of the disc and passing through centre of disc is:

(1) \(\frac{40}{9} MR^2 \)
(2) 10 MR^2
(3) \(\frac{37}{9} MR^2 \)
(4) 4 MR^2
78. In a collinear collision, a particle with an initial speed \(v_0 \) strikes a stationary particle of the same mass. If the final total kinetic energy is 50% greater than the original kinetic energy, the magnitude of the relative velocity between the two particles, after collision, is:

1. \(\sqrt{2} v_0 \)
2. \(\frac{v_0}{2} \)
3. \(\frac{v_0}{\sqrt{2}} \)
4. \(\frac{v_0}{4} \)

79. An EM wave from air enters a medium. The electric fields are

\[\mathbf{E}_1 = E_{01} \hat{x} \cos \left[2 \pi v \left(\frac{z}{c} - t \right) \right] \text{ in air and} \]

\[\mathbf{E}_2 = E_{02} \hat{x} \cos \left[k (z - ct) \right] \text{ in medium,} \]

where the wave number \(k \) and frequency \(v \) refer to their values in air. The medium is non-magnetic. If \(\varepsilon_{r1} \) and \(\varepsilon_{r2} \) refer to relative permittivities of air and medium respectively, which of the following options is correct?

1. \(\frac{\varepsilon_{r1}}{\varepsilon_{r2}} = 2 \)
2. \(\frac{\varepsilon_{r1}}{\varepsilon_{r2}} = \frac{1}{4} \)
3. \(\frac{\varepsilon_{r1}}{\varepsilon_{r2}} = 2 \)
4. \(\frac{\varepsilon_{r1}}{\varepsilon_{r2}} = 4 \)
For an RLC circuit driven with voltage of amplitude \(v_m \) and frequency \(\omega_0 = \frac{1}{\sqrt{LC}} \) the current exhibits resonance. The quality factor, \(Q \) is given by:

\[
\begin{align*}
(1) & \quad \frac{\omega_0 R}{L} \\
(2) & \quad \frac{R}{(\omega_0 C)} \\
(3) & \quad \frac{CR}{\omega_0} \\
(4) & \quad \frac{\omega_0 L}{R}
\end{align*}
\]

All the graphs below are intended to represent the same motion. One of them does it incorrectly. Pick it up.

80. \(v_m \) आपात तथा \(\omega_0 = \frac{1}{\sqrt{LC}} \) आवृति के विभाजन द्वारा चलता एक RLC परिपथ अनुसार देख जाता है। युग्मता कारक \(Q \) का मान होगा :

\[
\begin{align*}
(1) & \quad \frac{\omega_0 R}{L} \\
(2) & \quad \frac{R}{(\omega_0 C)} \\
(3) & \quad \frac{CR}{\omega_0} \\
(4) & \quad \frac{\omega_0 L}{R}
\end{align*}
\]

81. दिये गये सारे ग्राफ एक ही गति को दर्शाते हैं। कोई एक ग्राफ उस गति को गलत वर्गीकरण से दर्शाता है। वह ग्राफ हैः
82. Two batteries with e.m.f. 12 V and 13 V are connected in parallel across a load resistor of 10 Ω. The internal resistances of the two batteries are 1 Ω and 2 Ω respectively. The voltage across the load lies between:

(1) 11.5 V and 11.6 V
(2) 11.4 V and 11.5 V
(3) 11.7 V and 11.8 V
(4) 11.6 V and 11.7 V

83. A particle is moving with a uniform speed in a circular orbit of radius R in a central force inversely proportional to the nth power of R. If the period of rotation of the particle is T, then:

(1) \(T \propto R^{3/2} \)
(2) \(T \propto R^{n+1/2} \)
(3) \(T \propto R^n/2 \)
(4) \(T \propto R^{3/2} \) for any n.

84. If the series limit frequency of the Lyman series is \(v_L \), then the series limit frequency of the Pfund series is:

(1) 16 \(v_L \)
(2) \(v_L/16 \)
(3) \(v_L/25 \)
(4) 25 \(v_L \)

82. 12 V तथा 13 V विद्युत वातावरण के दो बैटरी को समानता क्रम में एक 10 Ω के लोड प्रतिरोध के साथ जोड़ा गया है। दोनों बैटरी के अंतर्निक प्रतिरोध क्रमशः 1 Ω तथा 2 Ω है। लोड प्रतिरोध के सिरों का विभव निम्न में से किन मानों के बीच होगा?

(1) 11.5 V तथा 11.6 V
(2) 11.4 V तथा 11.5 V
(3) 11.7 V तथा 11.8 V
(4) 11.6 V तथा 11.7 V

83. एक कण \(R \) किन्या के एक वृत्ताकार पथ पर किसी एक केंद्रीय बल, जो कि \(R \) की n वीं घात के व्युक्रमानुपात है, के अंतर्निक पूर्वता है। यदि कण का आवर्त काल \(T \) हो, तो:

(1) \(T \propto R^{3/2} \)
(2) \(T \propto R^{n+1/2} \)
(3) \(T \propto R^n/2 \)
(4) \(T \propto R^{3/2} \) n के किसी भी मान के लिए

84. यदि ताइमन ष्रेीणी की सीमा आवृत्ति \(v_L \) है तो पुंड ष्रेीणी की सीमा आवृत्ति होगी:

(1) 16 \(v_L \)
(2) \(v_L/16 \)
(3) \(v_L/25 \)
(4) 25 \(v_L \)
85. In an a.c. circuit, the instantaneous e.m.f. and current are given by:

\[e = 100 \sin 30 t \]
\[i = 20 \sin \left(30 t - \frac{\pi}{4} \right) \]

In one cycle of a.c., the average power consumed by the circuit and the wattless current are, respectively:

1. \(\frac{1000}{\sqrt{2}}, 10 \)
2. \(\frac{50}{\sqrt{2}}, 0 \)
3. 50, 0
4. 50, 10

86. Two moles of an ideal monoatomic gas occupies a volume \(V \) at 27°C. The gas expands adiabatically to a volume 2 \(V \). Calculate (a) the final temperature of the gas and (b) change in its internal energy.

(a) 195 K, (b) -2.7 kJ
(b) 189 K, (b) -2.7 kJ
(c) 195 K, (d) 2.7 kJ
(d) 189 K, (b) 2.7 kJ
87. A solid sphere of radius r made of a soft material of bulk modulus K is surrounded by a liquid in a cylindrical container. A massless piston of area a floats on the surface of the liquid, covering entire cross section of cylindrical container. When a mass m is placed on the surface of the piston to compress the liquid, the fractional decrement in the radius of the sphere, \(\frac{dr}{r} \), is:

\[
\begin{align*}
(1) & \quad \frac{Ka}{3mg} \\
(2) & \quad \frac{mg}{3Ka} \\
(3) & \quad \frac{mg}{Ka} \\
(4) & \quad \frac{Ka}{mg}
\end{align*}
\]

88. A granite rod of 60 cm length is clamped at its middle point and is set into longitudinal vibrations. The density of granite is \(2.7 \times 10^3 \) kg/m\(^3\) and its Young’s modulus is \(9.27 \times 10^{10} \) Pa. What will be the fundamental frequency of the longitudinal vibrations?

\[
\begin{align*}
(1) & \quad 2.5 \text{ kHz} \\
(2) & \quad 10 \text{ kHz} \\
(3) & \quad 7.5 \text{ kHz} \\
(4) & \quad 5 \text{ kHz}
\end{align*}
\]
89. The mass of a hydrogen molecule is 3.32×10^{-27} kg. If 10^{23} hydrogen molecules strike, per second, a fixed wall of area 2 cm2 at an angle of 45° to the normal, and rebound elastically with a speed of 10^3 m/s, then the pressure on the wall is nearly:

(1) 4.70×10^3 N/m2
(2) 2.35×10^2 N/m2
(3) 4.70×10^2 N/m2
(4) 2.35×10^3 N/m2

90. Seven identical circular planar disks, each of mass M and radius R are welded symmetrically as shown. The moment of inertia of the arrangement about the axis normal to the plane and passing through the point P is:

(1) $\frac{55}{2}MR^2$
(2) $\frac{73}{2}MR^2$
(3) $\frac{181}{2}MR^2$
(4) $\frac{19}{2}MR^2$