COMMON ENTRANCE TEST - 2018

SERIAL NO. 720784

DATE 19-04-2018
SUBJECT PHYSICS
TIME 10.30 am to 11.50 am

MAXIMUM MARKS 60
TOTAL DURATION 80 Minutes
MAXIMUM TIME FOR ANSWERING 70 Minutes

MENTION YOUR CET NUMBER

Dos:
1. Once again confirm whether the CET No. and name printed on the OMR Answer Sheet and the Admission Ticket are same.
2. This question booklet is issued to you by the invigilator after the 2nd bell i.e., after 10.30 am.
3. Confirm whether the OMR Answer Sheet and the Question Paper issued to you are with same version code.
4. The Version Code and Serial Number of this question booklet should be entered on the Nominal Roll without any mistakes.
5. Compulsorily affix the complete signature at the bottom portion of the OMR answer sheet in the space provided.

Don'ts:
1. The timing and marks printed on the OMR answer sheet should not be damaged / mutilated / spoiled.
2. The 3rd Bell rings at 10.40 am, till then;
 • Do not remove the seal present on the right hand side of this question booklet.
 • Do not look inside this question booklet.
 • Do not start answering on the OMR answer sheet.

IMPORTANT INSTRUCTIONS TO CANDIDATES
1. This question booklet contains 60 questions and each question will have one statement and four distracters. (Four different options / choices.)
2. After the 3rd Bell is rung at 10.40 am, remove the seal on the right hand side of this question booklet and check that this booklet does not have any unprinted or torn or missing pages or items etc., if so, get it replaced immediately by complete test booklet by showing it to Room Invigilator. Read each item and start answering on the OMR answer sheet.
3. During the subsequent 70 minutes:
 • Read each question carefully.
 • Choose the correct answer from out of the four available distracters (options / choices) given under each question / statement.
 • Completely darken / shade the relevant circle with a blue or black ink ballpoint pen against the question number on the OMR answer sheet.

4. Please note that even a minute unintended ink dot on the OMR answer sheet will also be recognized and recorded by the scanner. Therefore, avoid multiple markings of any kind on the OMR answer sheet.
5. Use the space provided on each page of the question booklet for Rough Work. Do not use the OMR answer sheet for the same.
6. After the last bell is rung at 11.50 am, stop writing on the OMR answer sheet and affix your left hand thumb impression on the OMR answer sheet as per the instructions.
7. Hand over the OMR answer sheet to the room invigilator as it is.
8. After separating the top sheet (KEA copy), the invigilator will return the bottom sheet replica (Candidate's copy) to you to carry home for self evaluation.
9. Preserve the replica of the OMR answer sheet for a minimum period of ONE year.
10. In case of any discrepancy in the English and Kannada Versions, the English version will be taken as final.

Physics (1-H)
1. The energy equivalent to a substance of mass 1 g is
 (A) $18 \times 10^{13} \text{ J}$
 (B) $9 \times 10^{13} \text{ J}$
 (C) $18 \times 10^{6} \text{ J}$
 (D) $9 \times 10^{6} \text{ J}$

2. The half-life of tritium is 12.5 years. What mass of tritium of initial mass 64 mg will remain undecayed after 50 years?
 (A) 32 mg
 (B) 8 mg
 (C) 16 mg
 (D) 4 mg

3. In a CE amplifier, the input ac signal to be amplified is applied across
 (A) Forward biased emitter-base junction
 (B) Reverse biased collector-base junction
 (C) Reverse biased emitter-base junction
 (D) Forward biased collector-base junction
4. If \(A = 1 \) and \(B = 0 \), then in terms of Boolean algebra, \(A + \overline{B} = \)

(A) \(B \)

(B) \(\overline{B} \)

(C) \(A \)

(D) \(\overline{A} \)

4. \(A = 1 \) \(\text{and} \ B = 0 \) \(\text{then,} \) \(\text{in terms of} \) \(\text{Boolean algebra,} \) \(A + \overline{B} = \)

(A) \(B \)

(B) \(\overline{B} \)

(C) \(A \)

(D) \(\overline{A} \)

5. The density of an electron-hole pair in a pure germanium is \(3 \times 10^{16} \) \(\text{m}^{-3} \) at room temperature. On doping with aluminium, the hole density increases to \(4.5 \times 10^{22} \) \(\text{m}^{-3} \). Now the electron density (in \(\text{m}^{-3} \)) in doped germanium will be

(A) \(1 \times 10^{10} \)

(B) \(2 \times 10^{10} \)

(C) \(0.5 \times 10^{10} \)

(D) \(4 \times 10^{10} \)

5. \(\text{The density of an electron-hole pair in pure germanium is} \) \(3 \times 10^{16} \) \(\text{m}^{-3} \) \(\text{at room temperature. On doping with aluminium, the hole density increases to} \) \(4.5 \times 10^{22} \) \(\text{m}^{-3} \). \(\text{Now the electron density (in m}^{-3} \text{)} \) in doped germanium will be

(A) \(1 \times 10^{10} \)

(B) \(2 \times 10^{10} \)

(C) \(0.5 \times 10^{10} \)

(D) \(4 \times 10^{10} \)
6. The dc common emitter current gain of a n-p-n transistor is 50. The potential difference applied across the collector and emitter of a transistor used in CE configuration is, \(V_{CE} = 2 \) V. If the collector resistance, \(R_C = 4 \) kΩ, the base current (\(I_B \)) and the collector current (\(I_C \)) are

(A) \(I_B = 10 \) \(\mu \)A, \(I_C = 0.5 \) mA
(B) \(I_B = 0.5 \) \(\mu \)A, \(I_C = 10 \) mA
(C) \(I_B = 5 \) \(\mu \)A, \(I_C = 1 \) mA
(D) \(I_B = 1 \) \(\mu \)A, \(I_C = 0.5 \) mA

7. The radius of the Earth is 6400 km. If the height of an antenna is 500 m, then its range is

(A) 800 km
(B) 100 km
(C) 80 km
(D) 10 km

8. A space station is at a height equal to the radius of the Earth. If \(v_E \) is the escape velocity on the surface of the Earth, the same on the space station is _____ times \(v_E \).

(A) \(\frac{1}{2} \)
(B) \(\frac{1}{4} \)
(C) \(\frac{1}{\sqrt{2}} \)
(D) \(\frac{1}{\sqrt{3}} \)

Space for Rough Work / ರೋಗ್ರಾಹದಲ್ಲಿ
9. A particle shows distance-time curve as shown in the figure. The maximum instantaneous velocity of the particle is around the point

(A) P (B) S (C) R (D) Q

10. Which of the following graphs correctly represents the variation of 'g' on the Earth?

(A)
(B)
(C)
(D)
11. A cup of tea cools from 65.5°C to 62.5°C in 1 minute in a room at 22.5°C. How long will it take to cool from 46.5°C to 40.5°C in the same room?

(A) 4 minutes
(B) 2 minutes
(C) 1 minute
(D) 3 minutes

12. The dimensions of the ratio of magnetic flux (\(\phi\)) and permeability (\(\mu\)) are:

(A) \([M^0 L^1 T^0 A^1]\)
(B) \([M^0 L^{-3} T^0 A^1]\)
(C) \([M^0 L^1 T^{-1} A^{-1}]\)
(D) \([M^0 L^2 T^0 A^1]\)

13. A mass ‘m’ on the surface of the Earth is shifted to a target equal to the radius of the Earth. If ‘R’ is the radius and ‘M’ is the mass of the Earth, then work done in this process is:

(A) \(\frac{mgR}{2}\)
(B) \(mgR\)
(C) 2 \(mgR\)
(D) \(\frac{mgR}{4}\)
14. First overtone frequency of a closed pipe of length \('l_1'\) is equal to the 2\(^{nd}\) harmonic frequency of an open pipe of length \('l_2'\).

The ratio \(\frac{l_1}{l_2}\) =

(A) \(\frac{3}{4}\)
(B) \(\frac{4}{3}\)
(C) \(\frac{3}{2}\)
(D) \(\frac{2}{3}\)

15. The resistance \(R = \frac{V}{I}\) where

\(V = (100 \pm 5)\) V and \(I = (10 \pm 0.2)\) A.

The percentage error in \(R\) is

(A) 5.2%
(B) 4.8%
(C) 7%
(D) 3%

16. A block rests on a rough inclined plane making an angle of 30° with the horizontal. The coefficient of static friction between the block and the plane is 0.8. If the frictional force on the block is 10 N, the mass of the block is (\(g = 10\, \text{ms}^{-2}\))

(A) 1 kg
(B) 2 kg
(C) 3 kg
(D) 4 kg

Space for Rough Work / ಬೆಲೆಯನ್ನು ಕೆಲಸ

Physics

\[
\begin{align*}
\frac{0.9 \times 10}{0.9 \times 10} &= 0 \\
\frac{10}{\frac{100}{9} + 7 - H} &= 10
\end{align*}
\]
17. Two particles of masses m_1 and m_2 have equal kinetic energies. The ratio of their momenta is
 (A) $m_1 : m_2$
 (B) $m_2 : m_1$
 (C) $\sqrt{m_1} : \sqrt{m_2}$
 (D) $m_1^2 : m_2^2$

18. The pressure at the bottom of a liquid tank is not proportional to the
 (A) Acceleration due to gravity
 (B) Density of the liquid
 (C) Height of the liquid
 (D) Area of the liquid surface

19. A Carnot engine takes 300 calories of heat from a source at 500 K and rejects 150 calories of heat to the sink. The temperature of the sink is
 (A) 125 K (B) 250 K (C) 750 K (D) 1000 K

20. Pressure of an ideal gas is increased by keeping temperature constant. The kinetic energy of molecules
 (A) Decreases
 (B) Increases
 (C) Remains same
 (D) Increases or decreases depending on the nature of gas

Space for Rough Work / ರೂಹ್ರ್ಯ ಕಲ್ಪನೆ ಜೊತೆ
21. A man weighing 60 kg is in a lift moving down with an acceleration of 1.8 m/s2. The force exerted by the floor on him is

(A) 588 N
(B) 480 N
(C) 0 N
(D) 696 N

22. Moment of inertia of a body about two perpendicular axes X and Y in the plane of lamina are 20 kg m2 and 25 kg m2 respectively. Its moment of inertia about an axis perpendicular to the plane of the lamina and passing through the point of intersection of X and Y axes is

(A) 5 kg m2
(B) 45 kg m2
(C) 12.5 kg m2
(D) 500 kg m2

23. Two wires A and B are stretched by the same load. If the area of cross-section of wire ‘A’ is double that of ‘B’, then the stress on ‘B’ is

(A) Equal to that on A
(B) Twice that on A
(C) Half that on A
(D) Four times that on A
24. The magnitude of point charge due to which the electric field 30 cm away has the magnitude \(2 \text{ NC}^{-1}\) will be:
 (A) \(2 \times 10^{-11} \text{ C}\)
 (B) \(3 \times 10^{-11} \text{ C}\)
 (C) \(5 \times 10^{-11} \text{ C}\)
 (D) \(9 \times 10^{-11} \text{ C}\)

25. A mass of 1 kg carrying a charge of 2 C is accelerated through a potential of 1 V. The velocity acquired by it is:
 (A) \(\sqrt{2} \text{ ms}^{-1}\)
 (B) \(2 \text{ ms}^{-1}\)
 (C) \(\frac{1}{\sqrt{2}} \text{ ms}^{-1}\)
 (D) \(\frac{1}{2} \text{ ms}^{-1}\)

26. The force of repulsion between two identical positive charges when kept with a separation 'r' in air is \(F\). Half the gap between the two charges is filled by a dielectric slab of dielectric constant = 4. Then the new force of repulsion between those two charges becomes:
 (A) \(\frac{F}{3}\)
 (B) \(\frac{F}{2}\)
 (C) \(\frac{F}{4}\)
 (D) \(\frac{4F}{9}\)

Space for Rough Work / ರೋಗ್ರಾಂಭಿಕ ಪ್ರಯೋಜನ
27. For the arrangement of capacitors as shown in the circuit, the effective capacitance between the points A and B is (capacitance of each capacitor is 4 \(\mu F \))

(A) 4 \(\mu F \)
(B) 2 \(\mu F \)
(C) 1 \(\mu F \)
(D) 8 \(\mu F \)

28. The work done to move a charge on an equipotential surface is

(A) Infinity
(B) Less than 1
(C) Greater than 1
(D) Zero

29. Two capacitors of 3 \(\mu F \) and 6 \(\mu F \) are connected in series and a potential difference of 900 V is applied across the combination. They are then disconnected and reconnected in parallel. The potential difference across the combination is

(A) Zero
(B) 100 V
(C) 200 V
(D) 400 V

Space for Rough Work / ಹೊಂದಿಸುವ ಕ್ರೂರ
30. Ohm's Law is applicable to
(A) Diode
(B) Transistor
(C) Electrolyte
(D) Conductor

31. If the last band on the carbon resistor is absent, then the tolerance is
(A) 5%
(B) 20%
(C) 10%
(D) 15%

32. The effective resistance between P and Q for the following network is

\[\frac{1}{12} \Omega \quad \frac{1}{21} \Omega \]

Space for Rough Work / ಧ್ವನಿ ಪ್ರತ್ಯೇಕ ಚಿತ್ರ
33. Five identical resistors each of resistance \(R = 1500 \, \Omega \) are connected to a 300 V battery as shown in the circuit. The reading of the ideal ammeter A is

\[
\begin{array}{c}
\text{(A) } \frac{1}{5} \, \text{A} \\
\text{(B) } \frac{3}{5} \, \text{A} \\
\text{(C) } \frac{2}{5} \, \text{A} \\
\text{(D) } \frac{4}{5} \, \text{A}
\end{array}
\]

34. Two cells of internal resistances \(r_1 \) and \(r_2 \) and of same emf are connected in series, across a resistor of resistance \(R \). If the terminal potential difference across the cells of internal resistance \(r_1 \) is zero, then the value of \(R \) is

\[
\begin{array}{c}
\text{(A) } R = 2(r_1 + r_2) \\
\text{(B) } R = r_2 - r_1 \\
\text{(C) } R = r_1 - r_2 \\
\text{(D) } R = 2(r_1 - r_2)
\end{array}
\]
35. The $I-V$ graphs for two different electrical appliances P and Q are shown in the diagram. If R_P and R_Q be the resistances of the devices, then

(A) $R_P = R_Q$
(B) $R_P > R_Q$
(C) $R_P < R_Q$
(D) $R_P = \frac{R_Q}{2}$

36. The correct Biot-Savart law in vector form is

(A) $d\vec{B} = \frac{\mu_0}{4\pi} \frac{I(d\vec{l} \times \vec{r})}{r^2}$

(B) $d\vec{B} = \frac{\mu_0}{4\pi} \frac{I(d\vec{l} \times \vec{r})}{r^3}$

(C) $d\vec{B} = \frac{\mu_0}{4\pi} \frac{I\vec{d}l}{r^2}$

(D) $d\vec{B} = \frac{\mu_0}{4\pi} \frac{I\vec{d}l}{r^3}$
37. An electron is moving in a circle of radius \(r \) in a uniform magnetic field \(B \). Suddenly the field is reduced to \(\frac{B}{2} \). The radius of the circular path now becomes

(A) \(\frac{r}{2} \)
(B) \(2r \)
(C) \(\frac{r}{4} \)
(D) \(4r \)

38. A charge \(q \) is accelerated through a potential difference \(V \). It is then passed normally through a uniform magnetic field, where it moves in a circle of radius \(r \). The potential difference required to move it in a circle of radius \(2r \) is

(A) \(2V \)
(B) \(4V \)
(C) \(1V \)
(D) \(3V \)

39. A cyclotron's oscillator frequency is 10 MHz and the operating magnetic field is 0.66 T. If the radius of its dees is 60 cm, then the kinetic energy of the proton beam produced by the accelerator is

(A) 9 MeV
(B) 10 MeV
(C) 7 MeV
(D) 11 MeV

Physics

\[
\begin{align*}
60 \times 0.66 & \rightarrow 3.96 \\
& \rightarrow 0.66 \times 60 \\
& \rightarrow 0.39600
\end{align*}
\]

Space for Rough Work / ಕೇವಲ ಚಿಹ್ನೆಗಳ ಪ್ರೋತ್ಸಾಹದಲ್ಲಿ
40. Needles N_1, N_2 and N_3 are made of a ferromagnetic, a paramagnetic and a diamagnetic substance respectively. A magnet when brought close to them will

(A) Attract all three of them

(B) Attract N_1 strongly, N_2 weakly and repel N_3 weakly

(C) Attract N_1 strongly but repel N_2 and N_3 weakly

(D) Attract N_1 and N_2 strongly but repel N_3

41. The strength of the Earth’s magnetic field is

(A) Constant everywhere

(B) Zero everywhere

(C) Having very high value

(D) Varying from place to place on the Earth’s surface
42. A jet plane having a wing-span of 25 m is travelling horizontally towards east with a speed of 3600 km/hour. If the Earth's magnetic field at the location is 4×10^{-4} T and the angle of dip is 30°, then, the potential difference between the ends of the wing is

(A) 4 V
(B) 5 V
(C) 2 V
(D) 2.5 V

43. Which of the following, represents the variation of inductive reactance (X_L) with the frequency of voltage source (v) ?

(A)
(B)
(C)
(D)
44. The magnetic flux linked with a coil varies as \(\phi = 3t^2 + 4t + 9 \). The magnitude of the emf induced at \(t = 2 \) seconds is

(A) 8 V
(B) 16 V
(C) 32 V
(D) 64 V

45. A 100 W bulb is connected to an AC source of 220 V, 50 Hz. Then the current flowing through the bulb is

(A) \(\frac{5}{11} \) A
(B) \(\frac{1}{2} \) A
(C) 2 A
(D) \(\frac{3}{4} \) A

46. In the series LCR circuit, the power dissipation is through

(A) R
(B) L
(C) C
(D) Both L and C

Physics

\[
\frac{200}{\phi} = 220 \left(\frac{10^2}{\phi} \right) = 2 \text{ A}
\]

\(\phi = 3 \times 4 + 4 \times 2 + 9 = 37 \)
47. In Karnataka, the normal domestic power supply AC is 220 V, 50 Hz. Here 220 V and 50 Hz refer to

(A) Peak value of voltage and frequency
(B) rms value of voltage and frequency
(C) Mean value of voltage and frequency
(D) Peak value of voltage and angular frequency

48. A step-up transformer operates on a 230 V line and a load current of 2 A. The ratio of primary and secondary windings is 1 : 25. Then the current in the primary is

(A) 25 A
(B) 50 A
(C) 15 A
(D) 12.5 A

49. The number of photons falling per second on a completely darkened plate to produce a force of 6.62×10^{-5} N is 'n'. If the wavelength of the light falling is 5×10^{-7} m, then $n = \ldots \times 10^{22}$.

$h = 6.62 \times 10^{-34} \text{ J-s}$

(A) 1
(B) 5
(C) 0.2
(D) 3.3

49. 6.62×10^{-5} N produce $6.62 \times 10^{-34} \text{ J-s}$

$n = \ldots \times 10^{22}$. ($h = 6.62 \times 10^{-34} \text{ J-s}$)

(A) 1
(B) 5
(C) 0.2
(D) 3.3
50. An object is placed at the principal focus of a convex mirror. The image will be at
(A) Centre of curvature
(B) Principal focus
(C) Infinity
(D) No image will be formed

51. An object is placed at a distance of 20 cm from the pole of a concave mirror of focal length 10 cm. The distance of the image formed is
(A) + 20 cm (B) + 10 cm
(C) - 20 cm (D) - 10 cm

52. A candle placed 25 cm from a lens forms an image on a screen placed 75 cm on the other side of the lens. The focal length and type of the lens should be
(A) + 18.75 cm and convex lens
(B) - 18.75 cm and concave lens
(C) + 20.25 cm and convex lens
(D) - 20.25 cm and concave lens

Space for Rough Work / ಚಾತುರ್ಯದ ಹಾಕಕು

Physics

\[\frac{1}{V} = \frac{1}{u} - \frac{1}{f} \]
\[\frac{1}{V} = \frac{1 - \frac{2}{13}}{20} = 0.04 \text{ cm}^{-1} \]
\[\frac{1}{V} = \frac{13 \times 25}{20 \times 20} = 1.625 \text{ cm}^{-1} \]
\[\frac{1}{V} = \frac{1}{u} - \frac{1}{v} \]
\[\frac{1}{V} = \frac{1}{u} - \frac{1}{v} \]
53. A plane wavefront of wavelength λ is incident on a single slit of width a. The angular width of principal maximum is

(A) $\frac{\lambda}{a}$ (B) $\frac{2\lambda}{a}$

(C) $\frac{a}{\lambda}$ (D) $\frac{a}{2\lambda}$

54. In a Fraunhofer diffraction at a single slit, if yellow light illuminating the slit is replaced by blue light, then diffraction bands

(A) Remain unchanged

(B) Become wider

(C)Disappear

(D) Become narrower

55. In Young's double slit experiment, two wavelengths $\lambda_1 = 780$ nm and $\lambda_2 = 520$ nm are used to obtain interference fringes. If the n^{th} bright band due to λ_1 coincides with $(n + 1)^{th}$ bright band due to λ_2, then the value of n is

(A) 4

(B) 3

(C) 2

(D) 6

\[\frac{\lambda_1}{\lambda_2} = \frac{n + 1}{n} \]

\[\frac{780 \times 10^{-9}}{520 \times 10^{-9}} = \frac{n + 1}{n} \]

(21 - H)
56. In Young's double slit experiment, slits are separated by 2 mm and the screen is placed at a distance of 1.2 m from the slits. Light consisting of two wavelengths 6500 Å and 5200 Å are used to obtain interference fringes. Then the separation between the fourth bright fringes of two different patterns produced by the two wavelengths is

(A) 0.312 mm
(B) 0.123 mm
(C) 0.213 mm
(D) 0.412 mm

57. The maximum kinetic energy of emitted photoelectrons depends on

(A) Intensity of incident radiation
(B) Frequency of incident radiation
(C) Speed of incident radiation
(D) Number of photons in the incident radiation
58. A proton and an α particle are accelerated through the same potential difference V. The ratio of their de Broglie wavelengths is

(A) \(\sqrt{2} \)

(B) \(2\sqrt{2} \)

(C) \(\sqrt{3} \)

(D) \(2\sqrt{3} \)

59. The total energy of an electron revolving in the second orbit of hydrogen atom is

(A) \(-13.6\) eV

(B) \(-1.51\) eV

(C) \(-3.4\) eV

(D) Zero

60. The period of revolution of an electron in the ground state of hydrogen atom is T. The period of revolution of the electron in the first excited state is

(A) \(2T\)

(B) \(4T\)

(C) \(6T\)

(D) \(8T\)

\[\text{Physics} \quad \frac{-13.6 \text{ eV}}{n^2} = \frac{-13.6 \text{ eV}}{2^2} = -\frac{13.6 \text{ eV}}{4} \quad (23 - H) \]
1. The students are required to按时完成 their homework. All students must turn in their homework by the specified time.

2. The duration of the quiz is 10:00 AM to 11:15 AM.

3. The total marks available are 50.

4. The quiz consists of multiple-choice questions.

5. Students who do not submit their homework by the deadline will receive a lower grade.

6. The quiz will be conducted in the classroom.

7. Students are not allowed to use electronic devices during the quiz.

8. The quiz will be graded on a scale of 0 to 100.

9. Students who score below 60% will need to retake the quiz.

10. Students who score above 80% will receive bonus points for their efforts.

Physics

(24 - H)