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DEFINITE INTEGRALS

The definite integral of a real-valued function f(x) with respect to a real variable x on an interval [a,

b] is expressed as:

Here,

∫ = Integration symbol

a = Lower limit

b = Upper limit

f(x) = Integrand

dx = Integrating agent

Thus, ∫ab f(x) dx is read as the definite integral of f(x) with respect to dx from a to b.

Definite Integral as Limit of Sum

The definite integral of any function can be expressed either as the limit of a sum or if there exists
an antiderivative F for the interval [a, b], then the definite integral of the function is the difference
of the values at points a and b. Let us discuss definite integrals as a limit of a sum. Consider a
continuous function f in x defined in the closed interval [a, b]. Assuming that f(x) > 0, the following
graph depicts f in x.



The integral of f(x) is the area of the region bounded by the curve y = f(x). This area is represented
by the region ABCD as shown in the above figure. This entire region lying between [a, b] is divided
into n equal subintervals given by [x0, x1], [x1, x2], …… [xr-1, xr], [xn-1, xn].

Let us consider the width of each subinterval as h such that h → 0, x0 = a, x1 = a + h, x2 = a +
2h,…..,xr = a + rh, xn = b = a + nh

and n = (b – a)/h

Also, n→∞ in the above representation.

Now, from the above figure, we write the areas of particular regions and intervals as:

Area of rectangle PQFR < area of the region PQSRP < area of rectangle PQSE ….(1)

Since, h→ 0, therefore xr–  xr-1→ 0. Following sums can be established as;

From the first inequality, considering any arbitrary subinterval [xr-1, xr] where r = 1, 2, 3….n, it can be
said that, sn< area of the region ABCD <Sn

Since, n→∞, the rectangular strips are very narrow, it can be assumed that the limiting values of
sn and Sn are equal and the common limiting value gives us the area under the curve, i.e.,

From this, it can be said that this area is also the limiting value of an area lying between the

rectangles below and above the curve. Therefore,



This is known as the definition of definite integral as the limit of sum.

Example 1: Evaluate the value of ∫23 x2 dx.

Solution:

Let I = ∫23 x2 dx

Now, ∫x2 dx = (x3)/3

Now, I =  ∫23 x2 dx = [(x3)/3]2
3

= (33)/3 – (23)/3

= (27/3) – (8/3)

= (27 – 8)/3

= 19/3

Therefore, ∫23 x2 dx = 19/3

Example 2: Calculate: ∫0π/4 sin 2x dx

Solution:

Let I = ∫0 π/4 sin 2x dx

Now, ∫ sin 2x dx = -(½) cos 2x

I = ∫0 π/4 sin 2x dx

= [-(½) cos 2x]0
π/4

= -(½) cos 2(π/4) – {-(½) cos 2(0)}

= -(½) cos π/2 + (½) cos 0

= -(½) (0) + (½)

= 1/2



Therefore, ∫0 π/4 sin 2x dx = 1/2

Properties of Definite Integrals

Properties Description

Property 1 p∫q f(a) da = p∫q f(t) dt

Property 2 p∫q f(a) d(a) = – q∫p f(a) d(a), Also p∫p f(a) d(a) = 0

Property 3 p∫q f(a) d(a) = p∫r f(a) d(a) + r∫q f(a) d(a)

Property 4 p∫q f(a) d(a) = p∫q f( p + q – a) d(a)

Property 5 o∫p f(a) d(a) = o∫p f(p – a) d(a)

Property 6 ∫02p f(a)da = ∫0p f(a)da +∫0p f(2p-a)da…if f(2p-a) = f(a)

Property 7

2 Parts

● ∫02 f(a)da = 2∫0a f(a) da … if f(2p-a) = f(a)

● ∫02 p f(a)da = 0 … if f(2p-a) = -f(a)

Property 8

2 Parts

● ∫-pp f(a)da = 2∫0p f(a) da … if f(-a) = f(a) or it’s an even function

● ∫-ppf(a)da = 0 … if f(2p-a) = -f(a) or it’s an odd function

Properties of Definite Integrals Proofs

Property 1: p∫q f(a) da = p∫q f(t) dt

This is the simplest property as only a is to be substituted by t, and the desired result is obtained.

 

Property 2: p∫q f(a) d(a) = – q∫p f(a) d(a), Also p∫p f(a) d(a) = 0

Suppose I = p∫q f(a) d(a)

If f’ is the anti-derivative of f, then use the second fundamental theorem of calculus, to get I =

f’(q)-f’(p) = – [f’(p) – f’(q)] = – q∫p(a)da.

Also, if p = q, then I= f’(q)-f’(p) = f’(p) -f’(p) = 0. Hence, a∫af(a)da = 0.

 

Property 3: p∫q f(a) d(a) = p∫r f(a) d(a) + r∫q f(a) d(a)

If f’ is the anti-derivative of f, then use the second fundamental theorem of calculus, to get;

p∫q f(a)da = f’(q)-f’(p)… (1)

p∫rf(a)da = f’(r) – f’(p)… (2)

r∫qf(a)da = f’(q) – f’(r) … (3)



Let’s add equations (2) and (3), to get

p∫r f(a)daf(a)da + r∫q f(a)daf(a)da = f’(r) – f’(p) + f’(q)

= f’(q) – f’(p) = p∫q f(a)da

 

Property 4: p∫q f(a) d(a) = p∫q f( p + q – a) d(a)

Let, t = (p+q-a), or a = (p+q – t), so that dt = – da … (4)

Also, note that when a = p, t = q and when a = q, t = p. So, p∫q wil be replaced by q∫p when we replace
a by t. Therefore,

p∫q f(a)da = –q∫p f(p+q-t)dt … from equation (4)

From property 2, we know that p∫q f(a)da = – q∫p f(a)da. Use this property, to get

p∫q f(a)da =p∫q f(p+q-t)da

Now use property 1 to get

p∫q f(a)da = p∫q f(p + q – a )da

 

Property 5: (a)da = (p-a)da
0

𝑝

∫ 𝑓
0

𝑝

∫ 𝑓

Let, t = (p-a) or a = (p – t), so that dt = – da …(5)

Also, observe that when a = 0, t =p and when a = p, t = 0. So, will be replaced

by  when we replace a by t. Therefore,

(a)da = – (p – t)da … from equation (5)
0

𝑝

∫ 𝑓
𝑝

0

∫ 𝑓

From Property 2, we know that (a)da = - (a)da. Using this property, we get
𝑝

𝑞

∫ 𝑓
𝑞

𝑝

∫ 𝑓

(a)da = (p-t)dt
0

𝑝

∫ 𝑓
0

𝑝

∫ 𝑓

Next, using Property 1, we get

(a)da = (p – a)da
0

𝑎

∫ 𝑓
0

𝑝

∫ 𝑓

 

Property 6: (a)da = (a)da + (2p – a))da
0

2𝑝

∫ 𝑓
0

𝑝

∫ 𝑓
0

𝑝

∫ 𝑓

From property 3, we know that



(a)da = (a)da + (a)da
𝑝

𝑞

∫ 𝑓
𝑝

𝑟

∫ 𝑓
𝑟

𝑞

∫ 𝑓

Therefore, (a)da = (a)da + (a)da = I1 + I2 … (6)
0

2𝑝

∫ 𝑓
0

𝑝

∫ 𝑓
𝑝

2𝑝

∫ 𝑓

Where, I1 = (a)da and I2 = (a)da
0

𝑝

∫ 𝑓
𝑝

2𝑝

∫ 𝑓

Let, t = (2p – a) or a = (2p – t), so that dt = -da …(7)

Also, note that when a = p, t = p, and when a =2p, t= 0. Hence, when we replace a by t.

Therefore,

I2 = (a)da = – (2p-0)da… from equation (7)
𝑝

2𝑝

∫ 𝑓
𝑝

0

∫ 𝑓

From Property 2, we know that (a)da = - (a)da. Using this property, we get I2 = ∫p0f(2p-t)dt
𝑝

𝑞

∫ 𝑓
𝑞

𝑝

∫ 𝑓

Next, using Property 1, we get

I2 = (a)da + (2p-a)da
0

𝑎

∫ 𝑓
0

𝑎

∫ 𝑓

Replacing the value of I2 in equation (6), we get

(a)da = (a)da + (2p – a)da
0

2𝑝

∫ 𝑓
0

𝑝

∫ 𝑓
0

𝑝

∫ 𝑓

Property 7: (a)da = 2 (a)da … if f(2p – a) = f(a) and
0

2𝑎

∫ 𝑓
0

𝑎

∫ 𝑓

(a)da = 0 … if f(2p- a) = -f(a)
0

2𝑎

∫ 𝑓

we know that

(a)da = (a)da + (2p – a)da … (8)
0

2𝑝

∫ 𝑓
0

𝑝

∫ 𝑓
0

𝑝

∫ 𝑓

Now, if f(2p – a) = f(a), then equation (8) becomes

(a)da = (a)da + (a)da
0

2𝑝

∫ 𝑓
0

𝑝

∫ 𝑓
0

𝑝

∫ 𝑓



=2 (a)da
0

𝑝

∫ 𝑓

And, if f(2p – a) = – f(a), then equation (8) becomes

(a)da = (a)da - (a)da = 0
0

2𝑝

∫ 𝑓
0

𝑝

∫ 𝑓
0

𝑝

∫ 𝑓

 

Property 8: (a)da = 2 (a)da … if f(-a) =f(a) or it is an even function and (a)da = 0,….. if
−𝑝

𝑝

∫ 𝑓
0

𝑝

∫ 𝑓
−𝑎

𝑎

∫ 𝑓

f(-a) = -f(a) or it is an odd function.

Using Property 3, we have

(a)da = (a)da + (a)da = I1 + I,2 …(9)
−𝑝

𝑝

∫ 𝑓
−𝑎

0

∫ 𝑓
0

𝑝

∫ 𝑓

Where, I1 = (a)da, I2 = (a)da
−𝑎

0

∫ 𝑓
0

𝑝

∫ 𝑓

Consider I1

Let, t = -a or a = -t, so that dt = -dx … (10)

Also, observe that when a = -p, t = p, when a = 0, t = 0. Hence, will be

replaced by when we replace a by t. Therefore,

I1 = (a)da = – (-a)da … from equation (10)
−𝑎

0

∫ 𝑓
𝑎

0

∫ 𝑓

From Property 2, we know that (a)da = – (a)da, use this property to get,
𝑝

𝑞

∫ 𝑓
𝑞

𝑝

∫ 𝑓

I1 = (a)da = (-a)da
−𝑝

0

∫ 𝑓
0

𝑝

∫ 𝑓

Next, using Property 1, we get

I1 = (a)da = (-a)da
−𝑝

0

∫ 𝑓
0

𝑝

∫ 𝑓

Replacing the value of I2 in equation (9), we get

(a)da = I1 + I2 = (-a)da + (a)da = 2 (a)da … (11)
−𝑝

𝑝

∫ 𝑓
0

𝑝

∫ 𝑓
0

𝑝

∫ 𝑓
0

𝑝

∫ 𝑓

Now, if ‘f’ is an even function, then f(– a) = f(a). Therefore, equation (11) becomes



(a)da = (a)da + (a)da = 2 (a)da
−𝑝

𝑝

∫ 𝑓
0

𝑝

∫ 𝑓
0

𝑝

∫ 𝑓
0

𝑝

∫ 𝑓

And, if ‘f’ is an odd function, then f(–a) = – f(a). Therefore, equation (11) becomes

(a)da = – (a)da + (a)da = 0
−𝑝

𝑝

∫ 𝑓
0

𝑎

∫ 𝑓
0

𝑝

∫ 𝑓

Example 1: Evaluate (a3 – a)da
−1

2

∫ 𝑓

Solution: Observe that, (a3 – a) ≥ 0 on [– 1, 0], (a3 – a) ≤ 0 on [0, 1] and (a3 – a) ≥ 0 on [1, 2]

Hence, using Property 3, we can write

(a3 – a)da = (a3 – a)da + -(a3 – a)da + (a3 – a)da = (a3 – a)da + (a – a3 )da + 
−1

2

∫ 𝑓
−1

0

∫ 𝑓
0

1

∫ 𝑓
1

2

∫ 𝑓
−1

0

∫ 𝑓
0

1

∫ 𝑓
1

2

∫ 𝑓

(a3 – a)da

∫0−1f(a3 – a)da +∫10f(a – a3 )da +∫21f(a3 – a)da

Solving the integrals, we get

(a3–a)da = x4/4–(x2/2)] −10 + [(x2/2 – (x4/4))01 + [x4/4−(x2/2)]12
−1

2

∫ 𝑓

= – [1/4 – 1/2] + [ – 1/4] + [ 4 – 2] - [1/4 -1/2] = 11/4

Example 2: Prove that 0∫π/2 (2log sinx – log sin 2x)dx = – (π/2) log 2 using the properties of
definite integral

Solution:

To prove: 0∫π/2 (2log sinx – log sin 2x)dx  = – (π/2) log 2 

Proof:

Let take I = 0∫π/2 (2log sinx – log sin 2x)dx …(1)

By using the property of definite integral

0∫a f(x) dx = 0∫a f(a-x) dx 

Now, apply the property in (1), we get

 I = 0∫π/2 2log sin[(π/2)-x] – log sin 2[(π/2)-x])dx 

The above expression can be written as

 I = 0∫π/2 [2log cosx- log sin(π-2x)]dx (Since, sin (90-θ = cos θ)

 I = 0∫π/2 [2log cosx- log sin2x]dx ..(2)



Now, add the equation (1) and (2), we get

I+ I = 0∫π/2 [(2log sinx – log sin 2x) +(2log cosx- log sin2x)]dx

2I =  0∫π/2 [2log sinx -2log 2sinx + 2log cos x]dx

2I = 2 0∫π/2 [log sinx -log 2sinx + log cos x]dx

Now, cancel out 2 on both the sides, we get

I = 0∫π/2 [log sinx + log cos x- log 2sinx]dx

Now, apply the logarithm property, we get

I = 0∫π/2log[(sinx. cos x)/sin2x]dx

We know that sin2x= 2 sinx cos x)

Now, the integral expression can be written as

I = 0∫π/2log[(sinx. cos x)/(2 sinx cos x)]dx

Cancel the terms which are common in both numerator and denominator, then we get

I = 0∫π/2 log(1/2)dx

It can be written as

I = 0∫π/2 (log1-log 2)dx [Since, log (a/b) = log a- log b]

I = 0∫π/2 -log 2 dx (value of log 1 = 0)

Now, take the constant – log 2 outside the integral,

I = -log 2 0∫π/2dx

Now, integrate the function

I = -log 2 [x]0
π/2

Now, substitute the limits

I = -log 2 [(π/2)-0]

I = – log 2 (π/2)

I = – (π/2) log 2 = R.H.S

Therefore, L.H. S = R.H.S

Hence. 0∫π/2 (2log sinx – log sin 2x)dx  = – (π/2) log 2 is proved.



Definite Integrals Rational or Irrational Expression

Definite integrals of Trigonometric Functions
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