prepp

Practice, Learn and Achieve Your Goal with Prepp

NDA Exam

Study Material for Maths

Simplifying
 Government Exams

© SSC CHS

© SSC CGL

(1) SBIPO
íz IBPS CLERK
害AFCAT
© SSC JE
© CTET
© CSIR UGC Net

(2) CAPF

it IBPS RRB

DEFINITE INTEGRALS

The definite integral of a real-valued function $f(x)$ with respect to a real variable x on an interval $[a$, b] is expressed as:

$$
\int_{a}^{b} f(x) d x=F(b)-F(a)
$$

Here,
$\int=$ Integration symbol
a = Lower limit
b = Upper limit
$f(x)=$ Integrand
$\mathrm{dx}=$ Integrating agent
Thus, $\int_{a}^{b} f(x) d x$ is read as the definite integral of $f(x)$ with respect to $d x$ from a to b.

Definite Integral as Limit of Sum

The definite integral of any function can be expressed either as the limit of a sum or if there exists an antiderivative F for the interval $[a, b]$, then the definite integral of the function is the difference of the values at points a and b. Let us discuss definite integrals as a limit of a sum. Consider a continuous function f in x defined in the closed interval $[a, b]$. Assuming that $f(x)>0$, the following graph depicts f in x .

The integral of $f(x)$ is the area of the region bounded by the curve $y=f(x)$. This area is represented by the region $A B C D$ as shown in the above figure. This entire region lying between [a, b] is divided into n equal subintervals given by $\left[x_{0}, x_{1}\right],\left[x_{1}, x_{2}\right], \ldots \ldots\left[x_{r-1}, x_{r}\right],\left[x_{n-1}, x_{n}\right]$.
Let us consider the width of each subinterval as h such that $h \rightarrow 0, x_{0}=a, x_{1}=a+h, x_{2}=a+$ $2 h, \ldots . . x_{r}=a+r h, x_{n}=b=a+n h$
and $n=(b-a) / h$
Also, $n \rightarrow \infty$ in the above representation.
Now, from the above figure, we write the areas of particular regions and intervals as:
Area of rectangle PQFR < area of the region PQSRP < area of rectangle PQSE
Since, $h \rightarrow 0$, therefore $x_{r}-x_{r-1} \rightarrow 0$. Following sums can be established as;

$$
\begin{aligned}
& s_{n}=h\left[f\left(x_{0}\right)+\ldots+f\left(x_{n-1}\right)\right]=h \sum_{r=0}^{n-1} f\left(x_{r}\right) \\
& S_{n}=h\left[f\left(x_{1}\right)+f\left(x_{2}\right)+\ldots+f\left(x_{n}\right)\right]=h \sum_{r=1}^{n} f\left(x_{r}\right)
\end{aligned}
$$

From the first inequality, considering any arbitrary subinterval $\left[x_{r-1}, x_{r}\right]$ where $r=1,2,3 \ldots . n$, it can be said that, $\mathrm{s}_{\mathrm{n}}<$ area of the region $\mathrm{ABCD}<\mathrm{S}_{\mathrm{n}}$

Since, $n \rightarrow \infty$, the rectangular strips are very narrow, it can be assumed that the limiting values of S_{n} and S_{n} are equal and the common limiting value gives us the area under the curve, i.e.,

$$
\lim _{n \rightarrow \infty} \mathrm{~S}_{n}=\lim _{n \rightarrow \infty} s_{n}=\text { Area of the region ABCD }=\int_{a}^{b} f(x) d x
$$

From this, it can be said that this area is also the limiting value of an area lying between the rectangles below and above the curve. Therefore,

$$
\begin{aligned}
& \int_{a}^{b} f(x) d x=\lim _{h \rightarrow 0} h[f(a)+f(a+h)+\ldots+f(a+(n-1) h] \\
& \int_{a}^{b} f(x) d x=(b-a) \lim _{n \rightarrow \infty} \frac{1}{n}[f(a)+f(a+h)+\ldots+f(a+(n-1) h]
\end{aligned}
$$

where,

$$
h=\frac{b-a}{n} \rightarrow 0 \text { as } n \rightarrow \infty
$$

This is known as the definition of definite integral as the limit of sum.
Example 1: Evaluate the value of $\int_{2}^{3} \mathrm{x}^{2} \mathrm{dx}$.

Solution:

Let $\mathrm{I}=\int_{2}^{3} \mathrm{x}^{2} \mathrm{dx}$
Now, $\int x^{2} \mathrm{dx}=\left(\mathrm{x}^{3}\right) / 3$
Now, $I=\int_{2}{ }^{3} x^{2} d x=\left[\left(x^{3}\right) / 3\right]_{2}{ }^{3}$
$=\left(3^{3}\right) / 3-\left(2^{3}\right) / 3$
$=(27 / 3)-(8 / 3)$
$=(27-8) / 3$
$=19 / 3$
Therefore, $\int_{2}{ }^{3} x^{2} d x=19 / 3$

Example 2: Calculate: $\int_{0}^{\pi / 4} \sin 2 x d x$

Solution:

Let $\mathrm{I}=\int_{0} \pi / 4 \sin 2 \mathrm{xdx}$
Now, $\int \sin 2 x d x=-(1 / 2) \cos 2 x$
$I=\int_{0}^{\pi / 4} \sin 2 x d x$
$=[-(1 / 2) \cos 2 x]_{0}^{\pi / 4}$
$=-(1 / 2) \cos 2(\pi / 4)-\{-(1 / 2) \cos 2(0)\}$
$=-(1 / 2) \cos \pi / 2+(1 / 2) \cos 0$
$=-(1 / 2)(0)+(1 / 2)$
$=1 / 2$

Therefore, $\int_{0} \pi / 4 \sin 2 x d x=1 / 2$

Properties of Definite Integrals

Properties	Description
Property 1	${ }_{p} \int^{a} \mathrm{f}(\mathrm{a}) \mathrm{da}={ }_{p} \int^{9} \mathrm{f}(\mathrm{t}) \mathrm{dt}$
Property 2	
Property 3	${ }_{p} \int^{a} f(a) d(a)={ }_{p}{ }^{r} f(a) d(a)+{ }_{1}{ }^{a} f(a) d(a)$
Property 4	${ }_{p}{ }^{9} f(a) d(a)={ }_{p}{ }^{a} f(p+q-a) d(a)$
Property 5	${ }_{0}^{\int^{p}} f(a) d(a)={ }_{0} \int^{p} f(p-a) d(a)$
Property 6	$\int_{0}^{2 p} f(a) d a=\int_{0}{ }^{p} f(a) d a+\int_{0}{ }^{p} f(2 p-a) d a \ldots$ if $f(2 p-a)=f(a)$
Property 7	2 Parts - $\int_{0}{ }^{2} f(a) d a=2 \int_{0}^{a} f(a) d a \ldots$ if $f(2 p-a)=f(a)$ - $\int_{0}^{2} p f(a) d a=0 \ldots$ if $f(2 p-a)=-f(a)$
Property 8	2 Parts - $\int_{-p}{ }^{p} f(a) d a=2 \int_{0}^{p} f(a) d a \ldots$ if $f(-a)=f(a)$ or it's an even function - $\int_{-p}{ }^{p} f(a) d a=0 \ldots$ if $f(2 p-a)=-f(a)$ or it's an odd function

Properties of Definite Integrals Proofs

Property 1: ${ }_{p}{ }^{q} f(a) d a={ }_{p}{ }^{q} f(t) d t$
This is the simplest property as only a is to be substituted by t , and the desired result is obtained.

Property 2: ${ }_{p}{ }^{q} f(a) d(a)=-{ }_{q}{ }^{p} f(a) d(a)$, Also $_{p}{ }^{p}{ }^{p} f(a) d(a)=0$
Suppose I $={ }_{p}{ }^{a} \mathrm{f}(\mathrm{a}) \mathrm{d}(\mathrm{a})$
If f^{\prime} is the anti-derivative of f, then use the second fundamental theorem of calculus, to get $\mathrm{I}=$ $f^{\prime}(q)-f^{\prime}(p)=-\left[f^{\prime}(p)-f^{\prime}(q)\right]=-{ }_{q}{ }^{p}(a) d a$.

Also, if $p=q$, then $I=f^{\prime}(q)-f^{\prime}(p)=f^{\prime}(p)-f^{\prime}(p)=0$. Hence, ${ }_{a}{ }^{[} f(a) d a=0$.

Property 3: ${ }_{p} \int^{a} f(a) d(a)={ }_{p} \int^{r} f(a) d(a)+{ }_{r} \int^{a} f(a) d(a)$
If f^{\prime} is the anti-derivative of f, then use the second fundamental theorem of calculus, to get;
${ }_{0}{ }^{[9} f(a) d a=f^{\prime}(q)-f^{\prime}(p) \ldots(1)$
${ }_{p}{ }^{[r f}(a) d a=f^{\prime}(r)-f^{\prime}(p) \ldots(2)$
. $\int a f(a) d a=f^{\prime}(q)-f^{\prime}(r) \ldots(3)$

Let's add equations (2) and (3), to get
${ }_{p} \int^{r} f(a) d a f(a) d a+{ }_{r}{ }^{q} f(a) d a f(a) d a=f^{\prime}(r)-f^{\prime}(p)+f^{\prime}(q)$
$=f^{\prime}(q)-f^{\prime}(p)={ }_{p}{ }^{q} f(a) d a$

Property 4: $\int{ }^{q} f(a) d(a)={ }_{p}{ }^{q} f(p+q-a) d(a)$
Let, $t=(p+q-a)$, or $a=(p+q-t)$, so that $d t=-d a$
Also, note that when $a=p, t=q$ and when $a=q, t=p$. So, ${ }_{p}{ }^{q}$ wil be replaced by ${ }_{q}{ }^{p}$ when we replace a by t . Therefore,
$\int_{p} \int^{q} f(a) d a=-{ }_{q}{ }^{p} f(p+q-t) d t . .$. from equation (4)
From property 2 , we know that ${ }_{p}{ }^{a} f(a) d a=-{ }_{q}{ }^{p} f(a) d a$. Use this property, to get
${ }_{p} \int^{q} f(a) d a={ }_{p}{ }^{q} f(p+q-t) d a$
Now use property 1 to get
${ }_{p}{ }^{q} f(a) d a={ }_{p} \int^{q} f(p+q-a) d a$

Property 5: $\int_{0}^{p} f(\mathbf{a}) \mathrm{da}=\int_{0}^{p} f(\mathbf{p}-\mathbf{a}) \mathrm{da}$
Let, $\mathrm{t}=(\mathrm{p}-\mathrm{a})$ or $\mathrm{a}=(\mathrm{p}-\mathrm{t})$, so that $\mathrm{dt}=-\mathrm{da}$
Also, observe that when $\mathrm{a}=0, \mathrm{t}=\mathrm{p}$ and when $\mathrm{a}=\mathrm{p}, \mathrm{t}=0 . \int_{0}^{p} \mathrm{So}$, will be \int_{0}^{p} replaced by when we replace a by t. Therefore,
$\int_{0}^{p} f(\mathrm{a}) \mathrm{da}=-\int_{p}^{0} f(\mathrm{p}-\mathrm{t}) \mathrm{da} \ldots$ from equation (5)
From Property 2, we know that $\int_{p}^{q} f(\mathrm{a}) \mathrm{da}=-\int_{q}^{p} f(\mathrm{a}) \mathrm{da}$. Using this property, we get
$\int_{0}^{p} f(\mathrm{a}) \mathrm{da}=\int_{0}^{p} f(\mathrm{p}-\mathrm{t}) \mathrm{dt}$
Next, using Property 1, we get

$$
\int_{0}^{a} f(a) d a=\int_{0}^{p} f(p-a) d a
$$

Property 6: $\left.\int_{0}^{2 p} f(a) d a=\int_{0}^{p} f(a) d a+\int_{0}^{p} f(2 p-a)\right) d a$
From property 3, we know that
$\int_{p}^{q} f(\mathrm{a}) \mathrm{da}=\int_{p}^{r} f(\mathrm{a}) \mathrm{da}+\int_{r}^{q} f(\mathrm{a}) \mathrm{da}$
Therefore, $\int_{0}^{2 p} f(\mathrm{a}) \mathrm{da}=\int_{0}^{p} f(\mathrm{a}) \mathrm{da}+\int_{p}^{2 p} f(\mathrm{a}) \mathrm{da}=\mathrm{I}_{1}+\mathrm{I}_{2}$
Where, $\mathrm{I}_{1}=\int_{0}^{p} f(\mathrm{a})$ da and $\mathrm{I}_{2}=\int_{p}^{2 p} f(\mathrm{a}) \mathrm{da}$
Let, $t=(2 p-a)$ or $a=(2 p-t)$, so that $d t=-d a \ldots(7)$
Also, note that when $\mathrm{a}=\mathrm{p}, \mathrm{t}=\mathrm{p}$, and when $\mathrm{a}=2 \mathrm{p}, \mathrm{t}=0 . \quad \int_{a}^{0}$ Hence, when we replace a by t . Therefore,
$\mathrm{I}_{2}=\int_{p}^{2 p} f(\mathrm{a}) \mathrm{da}=-\int_{p}^{0} f(2 \mathrm{p}-0) \mathrm{da} \ldots$ from equation (7)
From Property 2, we know that $\int_{p}^{q} f(\mathrm{a}) \mathrm{da}=-\int_{q}^{p} f(\mathrm{a}) \mathrm{da}$. Using this property, we get $\mathrm{I}_{2}=\int \operatorname{pOf}(2 \mathrm{p}-\mathrm{t}) \mathrm{dt}$ Next, using Property 1, we get
$\mathrm{I}_{2}=\int_{0}^{a} f(\mathrm{a}) \mathrm{da}+\int_{0}^{a} f(2 \mathrm{p}-\mathrm{a}) \mathrm{da}$
Replacing the value of I_{2} in equation (6), we get
$\int_{0}^{2 p} f(\mathrm{a}) \mathrm{da}=\int_{0}^{p} f(\mathrm{a}) \mathrm{da}+\int_{0}^{p} f(2 \mathrm{p}-\mathrm{a}) \mathrm{da}$

Property 7: $\int_{0}^{2 a} f(a) d a=\mathbf{2} \int_{0}^{a} f(a) d a \ldots$ if $f(\mathbf{2 p}-a)=\mathbf{f}(a)$ and
$\int_{0}^{2 a} f(a) d a=0 \ldots$ if $f(2 p-a)=-f(a)$
we know that
$\int_{0}^{2 p} f(\mathrm{a}) \mathrm{da}=\int_{0}^{p} f(\mathrm{a}) \mathrm{da}+\int_{0}^{p} f(2 \mathrm{p}-\mathrm{a}) \mathrm{da} \ldots$
Now, if $f(2 p-a)=f(a)$, then equation (8) becomes
$\int_{0}^{2 p} f(\mathrm{a}) \mathrm{da}=\int_{0}^{p} f(\mathrm{a}) \mathrm{da}+\int_{0}^{p} f(\mathrm{a}) \mathrm{da}$
$=2 \int_{0}^{p} f(a) d a$
And, if $f(2 p-a)=-f(a)$, then equation (8) becomes
$\int_{0}^{2 p} f(\mathrm{a}) \mathrm{da}=\int_{0}^{p} f(\mathrm{a}) \mathrm{da}-\int_{0}^{p} f(\mathrm{a}) \mathrm{d} \mathrm{a}=0$

Property 8: $\int_{-p}^{p} f(a) d a=2 \int_{0}^{p} f(a) d a \ldots$ if $f(-a)=\mathbf{f}(a)$ or it is an even function and $\int_{-a}^{a} f(a) d a=0, \ldots \ldots$ if

$f(-a)=-f(a)$ or it is an odd function.

Using Property 3, we have
$\int_{-p}^{p} f(\mathrm{a}) \mathrm{d} a=\int_{-a}^{0} f(\mathrm{a}) \mathrm{d} a+\int_{0}^{p} f(\mathrm{a}) \mathrm{d} a=\mathrm{I}_{1}+\mathrm{I}_{2} \ldots$ (9)
Where, $\mathrm{I}_{1}=\int_{-a}^{0} f(\mathrm{a}) \mathrm{da}, \mathrm{I}_{2}=\int_{0}^{p} f(\mathrm{a}) \mathrm{da}$
Consider I_{1}
Let, $\mathrm{t}=-\mathrm{a}$ or $\mathrm{a}=-\mathrm{t}$, so that $\mathrm{dt}=-\mathrm{dx}$.
Also, observe that when $\mathrm{a}=-\mathrm{p}, \mathrm{t}=\mathrm{p}$, when $\mathrm{a}=0, \mathrm{t}=0 . \int_{-a}^{0}$ Hence, will be \int_{a}^{0} replaced by when we replace a by t. Therefore,
$I_{1}=\int_{-a}^{0} f(\mathrm{a}) \mathrm{d} a=-\int_{a}^{0} f(-\mathrm{a}) \mathrm{da} \ldots$ from equation (10)
From Property 2, we know that $\int_{p}^{q} f(\mathrm{a}) \mathrm{da}=-\int_{q}^{p} f(\mathrm{a}) \mathrm{da}$, use this property to get,
$I_{1}=\int_{-p}^{0} f(a) d a=\int_{0}^{p} f(-a) d a$
Next, using Property 1, we get
$\mathrm{I}_{1}=\int_{-p}^{0} f(\mathrm{a}) \mathrm{da}=\int_{0}^{p} f(-\mathrm{a}) \mathrm{da}$
Replacing the value of I_{2} in equation (9), we get
$\int_{-p}^{p} f(a) d a=I_{1}+I_{2}=\int_{0}^{p} f(-a) d a+\int_{0}^{p} f(a) d a=2 \int_{0}^{p} f(a) d a \ldots($
Now, if ' f ' is an even function, then $f(-a)=f(a)$. Therefore, equation (11) becomes
$\int_{-p}^{p} f(\mathrm{a}) \mathrm{d} a=\int_{0}^{p} f(\mathrm{a}) \mathrm{da}+\int_{0}^{p} f(\mathrm{a}) \mathrm{da}=2 \int_{0}^{p} f(\mathrm{a}) \mathrm{da}$
And, if ' f ' is an odd function, then $f(-a)=-f(a)$. Therefore, equation (11) becomes
$\int_{-p}^{p} f(\mathrm{a}) \mathrm{da}=-\int_{0}^{a} f(\mathrm{a}) \mathrm{da}+\int_{0}^{p} f(\mathrm{a}) \mathrm{da}=0$

Example 1: Evaluate $\int_{-1}^{2} f\left(a^{3}-a\right) d a$
Solution: Observe that, $\left(a^{3}-a\right) \geq 0$ on $[-1,0],\left(a^{3}-a\right) \leq 0$ on $[0,1]$ and $\left(a^{3}-a\right) \geq 0$ on $[1,2]$
Hence, using Property 3, we can write
$\int_{-1}^{2} f\left(a^{3}-a\right) d a=\int_{-1}^{0} f\left(a^{3}-a\right) d a+\int_{0}^{1} f-\left(a^{3}-a\right) d a+\int_{1}^{2} f\left(a^{3}-a\right) d a=\int_{-1}^{0} f\left(a^{3}-a\right) d a+\int_{0}^{1} f\left(a-a^{3}\right) d a+\int_{1}^{2} f$
$\left(a^{3}-a\right) d a$
$\int 0-1 f\left(a^{3}-a\right) d a+\int 10 f\left(a-a^{3}\right) d a+\int 21 f\left(a^{3}-a\right) d a$
Solving the integrals, we get

$$
\begin{aligned}
& \left.\int_{-1}^{2} f\left(\mathrm{a}^{3}-\mathrm{a}\right) \mathrm{da}=\mathrm{x} 4 / 4-(\mathrm{x} 2 / 2)\right]-10+[(\mathrm{x} 2 / 2-(\mathrm{x} 4 / 4)) 01+[\times 4 / 4-(\times 2 / 2)] 12 \\
& =-[1 / 4-1 / 2]+[-1 / 4]+[4-2]-[1 / 4-1 / 2]=11 / 4
\end{aligned}
$$

Example 2: Prove that ${ }_{0} \int^{\pi / 2}(2 \log \sin x-\log \sin 2 x) d x=-(\pi / 2) \log 2$ using the properties of definite integral

Solution:

To prove: ${ }_{0}^{\pi / 2}(2 \log \sin x-\log \sin 2 x) d x=-(\pi / 2) \log 2$

Proof:

Let take $\mathrm{I}={ }_{0} \int^{\pi / 2}(2 \log \sin \mathrm{x}-\log \sin 2 \mathrm{x}) \mathrm{dx}$
By using the property of definite integral
${ }_{0}{ }^{a} f(x) d x={ }_{0}{ }^{a} f(a-x) d x$
Now, apply the property in (1), we get
$\left.I={ }_{0}{ }^{\pi / 2} 2 \log \sin [(\pi / 2)-x]-\log \sin 2[(\pi / 2)-x]\right) d x$
The above expression can be written as
$I={ }_{0} \int^{\pi / 2}[2 \log \cos x-\log \sin (\pi-2 x)] d x$ (Since, $\sin (90-\theta=\cos \theta)$
$I={ }_{0} \int^{\pi / 2}[2 \log \cos x-\log \sin 2 x] d x$..(2)

Now, add the equation (1) and (2), we get
$I+I={ }_{0}^{\pi / 2}[(2 \log \sin x-\log \sin 2 x)+(2 \log \cos x-\log \sin 2 x)] d x$
$21=\int_{0}^{\pi / 2}[2 \log \sin x-2 \log 2 \sin x+2 \log \cos x] d x$
$2 I=2{ }_{0} \int^{\pi / 2}[\log \sin x-\log 2 \sin x+\log \cos x] d x$
Now, cancel out 2 on both the sides, we get
$I={ }_{0} \int^{\pi / 2}[\log \sin x+\log \cos x-\log 2 \sin x] d x$
Now, apply the logarithm property, we get
$I={ }_{0}^{\pi / 2} \log [(\sin x . \cos x) / \sin 2 x] d x$
We know that $\sin 2 x=2 \sin x \cos x$)
Now, the integral expression can be written as
$I=\int_{0}^{\pi / 2} \log [(\sin x \cdot \cos x) /(2 \sin x \cos x)] d x$
Cancel the terms which are common in both numerator and denominator, then we get
$I={ }_{0} \int^{\pi / 2} \log (1 / 2) d x$
It can be written as
$I={ }_{0} \int^{\pi / 2}(\log 1-\log 2) d x[$ Since, $\log (a / b)=\log a-\log b]$
$\mathrm{I}={ }_{0} \int^{\pi / 2}-\log 2 \mathrm{dx}($ value of $\log 1=0$)
Now, take the constant - $\log 2$ outside the integral,
$\mathrm{I}=-\log 2{ }_{0}{ }^{\pi / 2} \mathrm{dx}$
Now, integrate the function
$\mathrm{I}=-\log 2[\mathrm{x}]_{0}{ }^{\mathrm{T} / 2}$
Now, substitute the limits
$\mathrm{I}=-\log 2[(\pi / 2)-0]$
$1=-\log 2(\pi / 2)$
$1=-(\pi / 2) \log 2=$ R.H.S
Therefore, L.H. $S=$ R.H.S
Hence. $0_{0}^{\pi / 2}(2 \log \sin x-\log \sin 2 x) d x=-(\pi / 2) \log 2$ is proved.

Definite Integrals Rational or Irrational Expression

- $\int_{a}^{\infty} \frac{d x}{x^{2}+a^{2}}=\frac{\pi}{2 a}$
$\cdot \int_{a}^{\infty} \frac{x^{m} d x}{x^{n}+a^{n}}=\frac{\pi a^{m-n+1}}{n \sin \left(\frac{(m+1) \pi}{n}\right)}, 0<m+1<n$
- $\int_{a}^{\infty} \frac{x^{p-1} d x}{1+x}=\frac{\pi}{\sin (p \pi)}, 0<p<1$
- $\int_{a}^{\infty} \frac{x^{m} d x}{1+2 x \cos \beta+x^{2}}=\frac{\pi \sin (m \beta)}{\sin (m \pi) \sin \beta}$
- $\int_{a}^{\infty} \frac{d x}{\sqrt{a^{2}-x^{2}}}=\frac{\pi}{2}$
- $\int_{a}^{\infty} \sqrt{a^{2}-x^{2}} d x=\frac{\pi a^{2}}{4}$

Definite integrals of Trigonometric Functions

- $\int_{0}^{\pi} \sin (m x) \sin (n x) d x=\left\{\begin{array}{ll}0 & \text { if } m \neq n \\ \frac{\pi}{2} & \text { if } m=n\end{array} m, n\right.$ positive integers
- $\int_{0}^{\pi} \cos (m x) \cos (n x) d x=\left\{\begin{array}{cl}0 & \text { if } m \neq n \\ \frac{\pi}{2} & \text { if } m=n\end{array}\right.$ m,n positive integers
- $\int_{0}^{\pi} \sin (m x) \cos (n x) d x=\left\{\begin{array}{cc}0 & \text { if } m+n \text { even } \\ \frac{2 m}{m^{2}-n^{2}} & \text { if } m+n \text { odd }\end{array} m, n\right.$ integers

prepp

Latest Sarkari jobs,
 Govt Exam alerts,
 Results and Vacancies

> Latest News and Notification

- Exam Paper Analysis
- Topic-wise weightage
- Previous Year Papers with Answer Key
- Preparation Strategy \& Subject-wise Books

To know more Click Here

