prepp

Practice, Learn and Achieve Your Goal with Prepp

NDA Exam

Study Material for Maths

Simplifying
 Government Exams

© Ssc CHSL
Uisa IAS EXAM (ORRBNTPC

(1) SBIPO
i i iz ibps CLERK
妾AFCAT
© SSC JE
© CTET
© C CSIR UGC NET
CAPF
itz IBPS RRB

AREA UNDER CURVE

How to Determine the Area Under the Curve?

Let us assume the curve $y=f(x)$ and its ordinates at the x-axis be $x=a$ and $x=b$. Now, we need to evaluate the area bounded by the given curve and the ordinates given by $x=a$ and $x=b$.

The area under the curve can be assumed to be made up of many vertical, extremely thin strips. Let us take a random strip of height y and width dx as shown in the figure given above whose area is given by dA.

The area dA of the strip can be given as $\mathrm{y} d \mathrm{dx}$. Also, we know that any point of the curve, y is represented as $\mathrm{f}(\mathrm{x})$. This area of the strip is called an elementary area. This strip is located somewhere between $x=a$ and $x=b$, between the x-axis and the curve. Now, if we need to find the total area bounded by the curve and the x-axis, between $x=a$ and $x=b$, then it can be considered to be made of an infinite number of such strips, starting from $x=a$ to $x=b$. In other words, adding the elementary areas between the thin strips in the region PQRSP will give the total area.

Mathematically, it can be represented as:

[latex] A = \int\limits_\{a\}^b dA = \int\limits_\{a\}^b ydx = \int\limits_\{a\}^b f(x)dx[/latex]
Using the same logic, if we want to calculate the area under the curve $x=g(y), y$-axis between the lines $y=c$ and $y=d$, it will be given by:

[latex] A = \int
limits_\{c\}^^dxdy=\int\limits_\{c\}^dg(y)dy[/latex]
In this case, we need to consider horizontal strips as shown in the figure above.
Also, note that if the curve lies below the x-axis, i.e., $f(x)<0$ then following the same steps, you will get the area under the curve and x-axis between $x=a$ and $x=b$ as a negative value. In such cases, take the absolute value of the area, without the sign, i.e., |[latex]\int \backslash limits_\{a\}^b $f(x) d x \mid[/ l a t e x]$

Another possibility is that, when some portion of the curve may lie above the x-axis and some portion below the x-axis, as shown in the figure,

Here $A_{1}<0$ and $A_{2}>0$. Hence, this is the combination of the first and second case. Hence, the total area will be given as $\left|A_{1}\right|+A_{2}$

Solved Example

We need to find the total area enclosed by the circle $x^{2}+y^{2}=1$

Area enclosed by the whole circle $=4 x$ area enclosed OABO
$=4[$ latex] \backslash int \backslash limits_\{0\}^1 ydx [/latex](considering vertical strips)
[latex] =4 \int\limits_\{0\}^1 \sqrt\{\{1\}-\{x\}^\{2\}\}[/latex]

On integrating, we get,
[latex]=4 [\frac\{x\}\{2\}\sqrt\{\{1\}-\{x\}^\{2\}\}+ \frac\{1\}\{2\}\{sin\}^\{-1\}x\{]\}_\{0\}^\{1\}[/latex]
$=4 \times 1 / 2 \times \pi / 2$
$=\pi$
So the required area is π square units.

prepp

Latest Sarkari jobs,
 Govt Exam alerts,
 Results and Vacancies

> Latest News and Notification

- Exam Paper Analysis
- Topic-wise weightage
- Previous Year Papers with Answer Key
- Preparation Strategy \& Subject-wise Books

To know more Click Here

