

Memory Based

Civil Engineering

CE ANALYSIS-2020_Feb-09_Afternoon

SUBJECT	No. of Ques.	Topics Asked in Paper(Memory Based)	Level of Ques.	Total Marks
Engineering Mathematics	$\begin{aligned} & 1 \text { Marks: } 5 \\ & 2 \text { Marks: } 3 \end{aligned}$	Differential equation, Fourier series, Eigen values, Numerical method, Limits	Easy	11
Engineering Mechanics	$\begin{aligned} & 1 \text { Marks: } 0 \\ & 2 \text { Marks: } 0 \end{aligned}$	-	-	0
Fluid Mechanics	$\begin{aligned} & 1 \text { Marks: } 1 \\ & 2 \text { Marks: } 2 \end{aligned}$	Velocity component for stream lines, Boundary layer, Pipe flow	Easy	5
Solid Mechanics	$\begin{aligned} & 1 \text { Marks: } 3 \\ & 2 \text { Marks: } 2 \end{aligned}$	Tensile strength, Deflection	Average	7
Construction Material and Management	1 Marks: 2 Marks:		-	0
Environmental Engineering	1 Marks: 4 2 Marks: 3	Sedimentation and BOD, Solid waste management, Theoretical O_{2} demand, pH , Hardness	Average	10
Geomatics Engineering	$\begin{aligned} & 1 \text { Marks: } 0 \\ & 2 \text { Marks: } 3 \end{aligned}$	Levelling	Average	6
Geotechnical Engineering	$\begin{aligned} & 1 \text { Marks: } 4 \\ & 2 \text { Marks: } 5 \end{aligned}$	Consolidation	Average	14
Hydrology and Irrigation Engineering	1 Marks: 3 2 Marks: 2	Hydrograph, Gravity dam, Filled capacity, Water requirement of crops, Gravity dams, Drainage structure	Easy	7
Reinforced Cement Concrete	$\begin{aligned} & 1 \text { Marks: } 1 \\ & 2 \text { Marks: } 2 \end{aligned}$	Prestress		5
Steel Structures	$\begin{aligned} & 1 \text { Marks: } 1 \\ & 2 \text { Marks: } 0 \end{aligned}$	Shape factor	Easy	1
Structural Analysis	$\begin{aligned} & 1 \text { Marks: } 0 \\ & 2 \text { Marks: } 3 \end{aligned}$	Truss		6
Transportation Engineering	1 Marks: 3 2 Marks: 4	Airport, Railway, Pavement materials design, High geometric design, Traffic	Average	11
Open channel Flow	$\begin{aligned} & 1 \text { Marks: } 0 \\ & 2 \text { Marks: } 1 \end{aligned}$	Hydraulic jump	Average	2
General Aptitude	1 Marks: 5 2 Marks: 5	Number systems, Venn diagram, Calendar, Vocabulary	Easy	15
Total	65			100
Faculty Feedback		Overall paper was average level.		

GATE 2020 Examination* (Memory Based)

Civil Engineering

Test Date: 9th Feb-2020
Test Time: 2.30 pm to 5.30 pm
Stream Name: Civil Engineering

General Aptitude

Q. 1 - Q. 5 Carry One Mark each.

1. Ratio of sum of odd positive integers from 1 to 100 to the sum of even positive integers from 150 to 200 will be \qquad
(A) $45: 95$
(B) $50: 91$
(C) $1: 1$
(D) $1: 2$
[Ans. B]
2. Select the word that fits the analogy

Partial : Impartial :: Popular : \qquad
(A) Impopular
(B) Mispopular
(C) Dispopular
(D) Unpopular
[Ans. D]
3. Rescue teams deployed \qquad disaster hit areas combat \qquad a lot of difficulties to save the save the people
(A) in, with
(B) with, with
(C) with, of
(D) to, to
[Ans. A]
4. If $f(x)=x^{2}$ for all x in the range $(-\propto,+\propto)$, then $\left(\frac{f(f(f(x)))}{f(x)}\right)$ will be
(A) $[\mathrm{f}(\mathrm{x})]^{4}$
(B) $[f(x)]^{3}$
(C) $f(x)$
(D) $[\mathrm{f}(\mathrm{x})]^{2}$
[Ans. B]

Q.6-Q. 10 Carry Two Mark each.

6. If there are 1000 students in the class 600 play chess 300 play hockey and 50 play both the games. Number students neither play chess not hockey is?
7. For the year 2019 the calendar will be same as the following years?
(A) 2011
(B) 2012
(C) 2013
(D) 2014
[Ans. C]
8. Nominal interest rate is defined as the amount paid by the borrower to the lender for using the borrowed amount for a specific period of time. Real interest rate is calculated on the basis of actual rate (inflation-adjusted) is approximately equal to the difference between nominal rate and expected rate of inflation in the economy.
(A) Under low inflation, real interest rate is low and borrowers get benefitted
(B) Under high inflation, real interest rate is low and lender gets benefitted
(C) Under low inflation, real interest rate is high and borrowers benefitted
(D) Under high inflation, real interest rate is low and borrowers benefitted
[Ans. D]
9. Percentage LED bulbs sold by two firms X and Y from January to June is given below.

January	15%
February	20%
March	30%
April	15%
May	10%
June	10%

Ratio of LED bulbs sold by X and Y are as shown below.

	X:Y
January	$7: 8$
February	$2: 3$
March	$2: 1$
April	$3: 2$
May	$1: 4$
June	$9: 11$

If total bulbs sold by X and Y is 50,000 then the number of bulbs sold by firm Y during
April to June is \qquad —.
(A) 8250
(B) 8750
(C) 9750
(D) 11250
[Ans. C]

CE-Set - 2

10. HOD of a college wants to rearrange four faculty rooms based on their requirements. P needs room near to lab. Q needs room near to lift. R needs visibility to the playground, and S need a corner room. Which of the following arrangement will be satisfying the requirements?
(A)

(B)

(C)

(D)

[Ans. A]

CE-Set - 2

Technical

Q.1-Q. 25 Carry One Mark each.

1. Two identically sized primary settling tanks receive water for type-1 settling under laminar flow condition. The SOR in the two tanks are $30 \mathrm{~m}^{3} / \mathrm{m}^{2} \mathrm{~d}$ and $15 \mathrm{~m}^{3} / \mathrm{m}^{2} \mathrm{~d}$. Find $\frac{\mathrm{d}_{30}}{\mathrm{~d}_{15}}$, $\mathrm{d}_{30} \& \mathrm{~d}_{15}$ are the lowest dia of particle which will settled out is \qquad
2. A hydraulic jump occurs in a triangular channel with side slopes $1: 1(\mathrm{~V}: \mathrm{H})$. The sequent depths are 0.5 m and 1.5 m . The flow rate (in $\mathrm{m}^{3} / \mathrm{s}$) is \qquad
3. The following partial differential equation is defined for $u: u(x, y)$
$\frac{d \mathrm{u}}{\mathrm{dy}}=\frac{\partial^{2} \mathrm{u}}{\partial \mathrm{x}^{2}} ; \mathrm{y} \geq 0 ; \mathrm{x}_{1} \leq \mathrm{x} \leq \mathrm{x}_{2}$
The set of auxiliary condition necessary to solve the equation uniquely is
(A) 3 initial condition
(B) 2 initial and 1 boundary
(C) 1 initial and 2 boundary
(D) 3 boundary
[Ans. D]
4. A fair coin is tossed 15 times. The probability of getting exactly 8 heads is \qquad .
[Ans. 0.1963]
5. The ordinary differential equation $\frac{d^{2} u}{d x^{2}}+2 x^{2} u+\sin x=0$ is
(A) Linear and homogeneous
(B) Non-linear and homogeneous
(C) Linear and non-homogeneous
(D) Non-linear and non-homogeneous
[Ans. C]
6. The value of $\lim _{x \rightarrow \infty}\left(\sqrt{\frac{9 x^{2}+2020}{x+7}}\right)$ is
(A) Indeterminable
(B) 1
(C) 3
(D) $7 / 9$
[Ans. C]

CE-Set - 2

7. For an axle load of 15 Ton, the vehicle damage factor in terms of standard axle load of 8 Ton is \qquad —.
[Ans. *]Range: 12.3 to 12.4
8. The ion product of water is 14 . If a rain water has pH of 5.6 , the concentration of OH^{-}in the sample (in $10^{-9} \mathrm{~mol} /$ litre)
9. A gas contains two types of suspended particles having average size $2 \mu \mathrm{~m}$ and $50 \mu \mathrm{~m}$ most suitable strategy
(A) Settling chamber followed by bag filter
(B) Bag filter followed by ESP
(C) ESP followed by cyclonic separator
(D) ESP followed by venturi scrubber
10. Velocity distribution in a boundary layer is $\left(\frac{u}{U_{\infty}}=\sin \left(\frac{\pi y}{2 \delta}\right)\right)$ where u is the velocity at vertical co-ordinate $y, u_{\infty}=$ free stream velocity $=0.3 \mathrm{~m} / \mathrm{sec}$;
$\delta=$ boundary layer thickness $=1 \mathrm{~m}$. Velocity gradient $\left(\frac{\partial u}{\partial y}\right)$ in $\left(\Delta^{-1}\right)$ at $y=0$ is \qquad -
[Ans. *] Range; 0.471 to 0.471
11. velocity component in x and y direction of incompressible flow are $u=-5+6 x$, $v=-(9+6 y)$. Equation of stream line is \qquad
(A) $\frac{(9+6 y)}{-5+6 x}=$ constant
(B) $(-5+6 x)-(9+6 y)=$ constant
(C) $\frac{-5+6 x}{9+6 y}=$ constant
(D) $(-5+6 \mathrm{x})(9+6 \mathrm{y})=\mathrm{constant}$
[Ans. D]
12. 500 gm dry sand poured into 2 liter container, 86 cc water displaced from the container, take water density $1 \mathrm{~g} / \mathrm{cc}$. Then specific gravity of sand is \qquad
13. Muskingum method used for
(A) Hydraulic river routing
(B) Hydrological Chanel routing
(C) Hydrological river routing
(D) Hydraulic Chanel routing
[Ans. B]
14. Find the rotation at point R.

$\left[\right.$ Ans. $\left.\frac{\mathbf{P L}^{2}}{12 \mathrm{EI}}\right]$
15. The diameter \& height of a right cylinder are $3 \mathrm{~cm} \& 4 \mathrm{~cm}$, respectively. The absolute error in each of these two measurements is 0.2 cm . the absolute error in the computed volume (in cm^{3}) is \qquad .
16. Traffic starts discharging from an approach at an intersection with the signal turning green. The constant head way considered from the fourth or fifth headway position is referred as \qquad —.
(A) Intersection headway
(B) Saturation headway
(C) Effective headway
(D) Discharge headway
17. 24 hour traffic count on a road section was found to be 1000 vehicles on a Tuesday in July. If daily adjustment factor $=1.121$ and monthly adjustment factor of July $=0.913$, the annual average daily traffic is \qquad \square.
[Ans. *]Range: 1023 to 1024
18. Find excess rainfall, Catchment area $=300 \mathrm{~km}^{2}$. Triangle shape with 90 hrs duration.

Peak discharge $=60 \mathrm{~m}^{3} / \mathrm{s}$
[Ans. *] Range: 6.4 to 6.6

CE-Set - 2

Q. 26 - Q. 55 Carry Two Mark each.

26. The fourier series to represent $x-x^{2}$ for $-\pi \leq x \leq \pi$ is given by $x-x^{2}=\frac{a_{0}}{2}+$ $\sum_{n=1}^{\infty} a_{n} \cos n x+\sum_{n=1}^{\infty} b_{n} \sin n x$
The value of a_{o} is \qquad
[Ans. -6.58]
27. $\mathrm{A} 4 \times 4$ matrix P is given below
$P=\left[\begin{array}{cccc}0 & 1 & 3 & 0 \\ -2 & 3 & 0 & 4 \\ 0 & 0 & 6 & 1 \\ 0 & 0 & 1 & 6\end{array}\right]$
The eigen values of $[\mathrm{P}]$ is \qquad
(A) $1,2,3,4$
(B) $1,2,5,7$
(C) $0,3,6,6$
(D) $3,4,5,7$
[Ans. B]
28. An ordinary differential equation is given below,
$6 \frac{d^{2} y}{d x^{2}}+\frac{d y}{d x}-y=0$
The general solution of the above equation is
(A) $y(x)=C_{1} e^{-\frac{x}{3}}+C_{2} e^{\frac{x}{2}}$
(B) $y(x)=C_{1} e^{\frac{x}{3}}+C_{2} e^{-\frac{x}{2}}$
(C) $y(x)=C_{1} e^{\frac{x}{3}}+C_{2} e^{\frac{x}{2}}$
(D) $y(x)=C_{1} e^{-\frac{x}{3}}+C_{2} e^{-\frac{x}{2}}$
[Ans. B]
29. The integral $\int_{0}^{1}\left(5 x^{3}+4 x^{2}+3 x+2\right) d x$ is estimate numerically using 3 alternative methods, namely the rectangle, trapezoidal and Simpson's rule with a common step size. In this context which one of the following statements is true?
(A) Simpson's rule rectangle rule as well as trapezoidal rule of estimation will give nonzero error
(B) Only Simpson rule will give zero error
(C) Simpson R rectangle give non-zero error
(D) Only rectangle will give zero error
[Ans. B]
30. Match column A to column B

Test

a. Soundness Test
b. Crushing Test
c. Los angeles abrasion test
d. Striping value test

Purpose

1. Strength
2. Resistance to weathering
3. Adhesion
4. hardness
[Ans. a-2, b-1, c-4, d-3]
5. For the hottest month at a proposed site of an airport the monthly mean of average daily temperature and monthly mean of maximum daily temperature are $39^{\circ} \mathrm{C}$ and $48^{\circ} \mathrm{C}$ respectively. For this information, the airport reference temperature will be \qquad ?
(A) $42^{\circ} \mathrm{C}$
(B) $39^{\circ} \mathrm{C}$
(C) $48^{\circ} \mathrm{C}$
(D) $36^{\circ} \mathrm{C}$
[Ans. A]
6. Design speed of a 2 lane 2 way road is 60 KMPH coefficient of longitudinal friction is found to be 0.36 . If the reaction time of the driver is 2.5 sec , what will be the intermediate sight distance (ISD)? (consider $=9.81 \mathrm{~ms}^{-2}$)
[Ans. *]Range: 160 to 164
7. The relationship between oxygen consumption and equivalent biodegradable organic removal (i.e., BOD) in a closed container with respect to time is shown in figure.

Assume that the rate of oxygen consumption is directly proportional to the amount of degradable organic matter and is expressed as
$\frac{d L_{t}}{d t}=-k L_{t}$, where, L_{t} is the oxygen equivalent of the organics remaining at time ' t ' and $\mathrm{k}\left(\right.$ in $\left.^{-1}\right)$ is the degradation rate constant. L_{o} is the oxygen equivalent of organic matter at time $\mathrm{t}=0$
Correct expression
(A) $\mathrm{L}_{\mathrm{o}}=\mathrm{L}_{\mathrm{t}} \mathrm{e}^{-\mathrm{kt}}$
(B) $\mathrm{BOD}_{5}=\mathrm{L}_{5}$
(C) $\mathrm{L}_{\mathrm{t}}=\mathrm{L}_{\mathrm{o}}\left(1-\mathrm{e}^{-\mathrm{kt}}\right)$
(D) $\mathrm{BOD}_{\mathrm{t}}=\mathrm{L}_{\mathrm{o}}-\mathrm{L}_{\mathrm{t}}$
[Ans. D]

CE-Set - 2

34. Alkalinity of water, in equivalent/litre is given by
$\left\{\mathrm{HCO}_{3}^{-}\right\}+2\left\{\mathrm{CO}_{3}^{2-}\right\}+\left\{\mathrm{OH}^{-}\right\}-\left\{\mathrm{H}^{+}\right\}$Where $\}$represents concentration in mol/litre. For a water sample, the concentration of $\mathrm{HCO}_{3}^{-}=2 \times 10^{-3} \mathrm{~mol} / \mathrm{litre}, \mathrm{CO}_{3}^{2^{-}}=3.04 \times$ $10^{-4} \mathrm{~mol} / \mathrm{litre}$ and pH of water $=9.0$. The atomic weight are $\mathrm{Ca}=40, \mathrm{C}=12$ and $\mathrm{O}=16$. If the concentration of OH^{-}and H^{+}are neglected the alkalinity of water sample (in $\mathrm{mg} /$ litre as CaCO_{3}) is \qquad
(A) 50
(B) 65.2
(C) 100
(D) 130.4
[Ans. D]
35. A sample of water contains an organic compound $\mathrm{C}_{8} \mathrm{H}_{16} \mathrm{O}_{8}$ at a concentration of $10^{-3} \mathrm{~mol} /$ litre. Given that atomic weight of $\mathrm{C}=12 \mathrm{~g} / \mathrm{mol}, \mathrm{H}=1 \mathrm{~g} / \mathrm{mol}$ and $\mathrm{O}=16 \mathrm{~g} / \mathrm{mol}$, the theoretical oxygen demand of water (in gram of O_{2} per litre is \qquad
[Ans. *]
36. A cast iron pipe of $\mathrm{d}=600 \mathrm{~mm}$ and $\mathrm{l}=400 \mathrm{~mm}$ carries water from a tank and discharges freely to the air at a point 4.5 m below the water surface in the tank. The friction factor $=0.018$ and $g=9.81$, velocity of flow of pipe is \qquad m/s
[Ans. 9.34]
37. Mohr's circle for a state of stress is given below

Find the state of stress

(C)

(B)

(D)

[Ans. B]

Exam Analysis

CE-Set - 2
38. A cantilever beam is loaded as shown in figure.

The SFD for the above case is
(A)

(B)

(C)

(D)

[Ans. A]
39. The flow(q)-density(K) relationship on a highway section is shown below

Which of the following options will be correct relationship between speed (V) and density (K)
(A)

(B)

(C)

(D)

Exam Analysis

CE-Set - 2

40. Field capacity $=30 \%$, Permanent wilting point $=13 \%$, Moisture content for irrigation $=$ 20%, Density of soil= $1500 \mathrm{~kg} / \mathrm{m}^{3}$, Density of water $=1000 \mathrm{~kg} / \mathrm{m}^{3}$, depth of root zone= 80 cm , consumptive use $=2 \mathrm{~mm}$. Find frequency of irrigation
(A) 11
(B) 12
(C) 10
(D) 7
41. Density of concrete $=24 \mathrm{kN} / \mathrm{m}^{3}$

Density of water $=9.81 \mathrm{kN} / \mathrm{m}^{3}$
Coefficient of friction, $\mu=0.45$
Find minimum base width?

THE GATE ACADEMY PRESENTS

Topper's Clu6 Be a Member

Stand a chance to WIN exciting prizes \& Post GATE Guidance

iPads

Enroll Now

