prepp

Practice, Learn and Achieve Your Goal with Prepp

NDA Exam

Study Material for Physios

Simplifying
 Government Exams

© Csc CHSL

(D) Rrbntpc

(4) SSC CGL

2CBSE UGC NET

送 NDA
itiz IBPS CLERK事AFCAT © SSC JE © CTET
© CPIR UGC NET
CAPF
izz IBPS RRB

Simple Electric Circuits

Kirchoff's Law:

Kirchoff current law: states that the net current on a junction in an electrical circuit will be zero. It is based on the conservation of charge.

Kirchoff Voltage Law: states that the algebraic sum of all potential difference along a closed loop is Zero. It is based on conservation of energy.

Electric Cell:

- An electric cell is a device which converts chemical energy into electrical energy.
- Electric cell is of two types:
a. Primary cell: cannot be charged. Voltaic, Daniell and Leclanche cells are primary cells.
b. Secondary cell: can be charged again \& again. Acid and alkali accumulators are secondary cells.

Solved Examples

1. A current of 0.75 A is drawn by the filament of an electric bulb for 10 minutes. Find the amount of electric charge that flows through the circuit.
a. 400 C
b. 500 C
c. 450 C
d. 550 C

Solution: c

Given, $\mathrm{l}=0.75 \mathrm{~A}, \mathrm{t}=10$ minutes $=600 \mathrm{~s}$
We know, $Q=1 \times t=0.75 \times 600$
Therefore, $\mathrm{Q}=450 \mathrm{C}$

2. What constitutes current in a metal wire?

a. Electrons
b. Protons
c. Atoms
d. Molecules

Solution: a.

Electrons. Electric current is the flow of electric charge. The electric charge mainly constitutes the electrons.
3. An electric lamp of $\mathbf{1 0 0}$ watt is used for $\mathbf{1 0}$ hours per day. The 'units' of energy consumed in one day by the lamp is
a. 1 unit
b. 0.1 unit
c. 10 units
d. 100 units

Solution: a

Total Power $=100 \times 10=1000$ watts $=1 \mathrm{kWh}=1$ unit

Directions for next 4 Questions:

A network of resistors is connected to a 16 V battery with internal resistance of 1Ω, as shown in Fig.

4. The equivalent resistance of the network.
a. 6Ω
b. 11Ω
c. 7Ω
d. 8Ω

Solution: c

The network is a simple series and parallel combination of resistors. First the two 4Ω resistors in parallel are equivalent to a resistor $=[(4 \times 4) /(4+4)] \Omega=2 \Omega$.

In the same way, the 12Ω and 6Ω resistors in parallel are equivalent to a resistor of $[(12 \times 6) /(12+6)] \Omega=4 \Omega$.

The equivalent resistance R of the network is obtained by combining these resistors (2Ω and 4 Ω) with 1Ω in series, that is,

$$
R=2 \Omega+4 \Omega+1 \Omega=7 \Omega .
$$

5. Obtain the current in $\mathbf{4 \Omega}$ resistor.

a. 3 A
b. 4 A
c. 1 A
d. 5A

Solution: c

The total current I in the circuit is
$\mathrm{I}=\varepsilon /(\mathrm{R}+\mathrm{r})=16 \mathrm{~V} /(7+1) \Omega=2 \mathrm{~A}$.
Consider the resistors between A and B. If I_{1} is the current in one of the 4Ω resistors and I_{2} the current in the other,
$I_{1} \times 4=I_{2} \times 4$
that is, $I_{1}=I_{2}$, which is otherwise obvious from the symmetry of the two arms. But $I_{1}+I_{2}=I=2 A$.
Thus,
$\mathrm{I}_{1}=\mathrm{I}_{2}=1 \mathrm{~A}$
that is, current in each 4Ω resistor is 1 A . Current in 1Ω resistor between B and C would be 2 A .

6. Obtain the current in $\mathbf{6 \Omega}$ resistor.

a. 3/4 A
b. $4 / 3 \mathrm{~A}$
c. $10 / 3 \mathrm{~A}$
d. 5/6A

Solution:b

Now, consider the resistances between C and D . If I_{3} is the current in the 12Ω resistor, and I_{4} in the 6Ω resistor,
$I_{3} \times 12=I_{4} \times 6$, i.e., $I_{4}=2 I_{3}$
But, $I_{3}+I_{4}=I=2 \mathrm{~A}$
Thus, $I_{3}=2 / 3 \mathrm{~A}, \mathrm{I}_{4}=4 / 3 \mathrm{~A}$
that is, the current in the 12Ω resistor is (2/3) A, while the current in the 6Ω resistor is (4/3) A.
7. Find the voltage drops $\mathrm{V}_{\mathrm{AB}}, \mathrm{V}_{\mathrm{BC}}$ and V_{CD}.
a. 4, 4 and 4 V
b. 1, 2 and 4 V
c. 2, 2 and 4 V
d. 4, 2 and 8 V

Solution: d

The voltage drop across $A B$ is $V_{A B}=I_{1} \times 4=1 \mathrm{~A} \times 4 \Omega=4 \mathrm{~V}$, This can also be obtained by multiplying the total current between A and B by the equivalent resistance between A and B, that is,
$\mathbf{V}_{\mathrm{AB}}=\mathbf{2 A \times 2 \Omega = \mathbf { 4 } \mathbf { V } , ~}$
The voltage drop across $B C$ is
$\mathbf{V}_{\mathrm{BC}}=\mathbf{2} \mathbf{A} \times \mathbf{1} \mathbf{\Omega}=\mathbf{2} \mathbf{V}$

This can alternately be obtained by multiplying total current between C and D by the equivalent resistance between C and D , that is, $\mathrm{V}_{\mathrm{CD}}=2 \mathrm{~A} \times 4 \Omega=8 \mathrm{~V}$
Note that the total voltage drop across $A D$ is $4 \mathrm{~V}+2 \mathrm{~V}+8 \mathrm{~V}=14 \mathrm{~V}$.
Thus, the terminal voltage of the battery is 14 V , while its emf is 16 V . The loss of the voltage (= 2 V) is accounted for by the internal resistance 1Ω of the battery [$2 \mathrm{~A} \times 1 \Omega=2 \mathrm{~V}$].

Directions for next 2 Questions:

A battery of 10 V and negligible internal resistance is connected across the diagonally opposite corners of a cubical network consisting of 12 resistors each of resistance 1Ω (Fig.).

8. What is the equivalent resistance of the network ?
a. 5/6 Ω
b. $6 / 5 \Omega$
c. 12Ω
d. 6Ω

Solution: a

9. What is the current along the edge $D^{\prime} C^{\prime}$ of the cube?

a. 3 A
b. 4 A
c. $10 / 3 \mathrm{~A}$
d. 5/6A

Solution: b

The network is not reducible to a simple series and parallel combinations of resistors. There is, however, a clear symmetry in the problem which we can exploit to obtain the equivalent resistance of the network.

The paths $A A^{\prime}, A D$ and $A B$ are obviously symmetrically placed in the network. Thus, the current in each must be the same, say, I. Further, at the corners A^{\prime}, B and D, the incoming current I must split equally into the two outgoing branches. In this manner, the current in all the 12 edges of the cube are easily written down in terms of I, using Kirchhoff's first rule and the symmetry in the problem.

Next take a closed loop, say, ABCC'EA, and apply Kirchhoff's second rule:
$-\mathrm{IR}-(1 / 2) \mathrm{IR}-\mathrm{IR}+\varepsilon=0$
where R is the resistance of each edge and ε the emf of battery. Thus, $\varepsilon=5 / 2 \mathrm{IxR}$

The equivalent resistance $R_{\text {eq }}$ of the network is
$R_{\text {eq }}=\varepsilon / 3 I=5 / 6 R$

For $R=1 \Omega, R_{\text {eq }}=(5 / 6) \Omega$ and for $\varepsilon=10 \mathrm{~V}$, the total current ($=31$) in the network is $3 \mathrm{I}=10 \mathrm{~V} /(5 / 6) \Omega=12 \mathrm{~A}$, i.e., $\mathrm{I}=4 \mathrm{~A}$
10. The four arms of a Wheatstone bridge (Fig.) have the following resistances: $A B=100 \Omega, B C$ $=10 \Omega, C D=5 \Omega$, and $D A=60 \Omega$.

A galvanometer of 15Ω resistance is connected across BD. What is the current through the galvanometer $\left(\mathrm{I}_{\mathrm{g}}\right)$ when a potential difference of 10 V is maintained across AC .
a. 4.87 A
b. 4.87 mA
c. 100 mA
d. 1 A

Solution: b

Considering the mesh BADB, we have
$100 \mathrm{I}_{1}+15 \mathrm{I}_{\mathrm{g}}-60 \mathrm{I}_{2}=0$
or $20 \mathrm{I}_{1}+3 \mathrm{I}_{\mathrm{g}}-12 \mathrm{I}_{2}=0$
or $20 I_{1}+3 I_{g}-12 I_{2}=0$

Considering the mesh BCDB, we have
$10\left(I_{1}-I_{g}\right)-15 I_{\mathrm{g}}-5\left(\mathrm{I}_{2}+\mathrm{I}_{\mathrm{g}}\right)=0$
$10 \mathrm{I}_{1}-30 \mathrm{I}_{\mathrm{g}}-5 \mathrm{I}_{2}=0$
$2 I_{1}-6 I_{g}-I_{2}=0$
[3.84(b)]

Considering the mesh ADCEA,
$60 \mathrm{I}_{2}+5\left(\mathrm{I}_{2}+\mathrm{I}_{\mathrm{g}}\right)=10$
$65 \mathrm{I}_{2}+5 \mathrm{I}_{\mathrm{g}}=10$
$13 \mathrm{I}_{2}+\mathrm{I}_{\mathrm{g}}=2$

Multiplying Eq. (3.84b) by 10
$20 \mathrm{I}_{1}-60 \mathrm{I}_{\mathrm{g}}-10 \mathrm{I}_{2}=0$ [3.84(d)]

From Eqs. (3.84d) and (3.84a) we have
$63 \mathrm{I}_{\mathrm{g}}-2 \mathrm{I}_{2}=0$
$\mathrm{I}_{2}=31.5 \mathrm{I}_{\mathrm{g}}$

Substituting the value of I_{2} into Eq. [3.84(c)], we get
$13\left(31.5 \mathrm{I}_{\mathrm{g}}\right)+\mathrm{Ig}=2$
$410.5 \mathrm{I}_{\mathrm{g}}=2$
$\mathrm{I}_{\mathrm{g}}=4.87 \mathrm{~mA}$.

prepp

Latest Sarkari jobs,
 Govt Exam alerts,
 Results and Vacancies

> Latest News and Notification

- Exam Paper Analysis
- Topic-wise weightage
- Previous Year Papers with Answer Key
- Preparation Strategy \& Subject-wise Books

To know more Click Here

