prepp

Practice, Learn and Achieve Your Goal with Prepp

NDA Exam

Study Material for Maths

Simplifying
 Government Exams

© SSC CHSL

© SSC CGL

(1) SBIPO
íz IBPS CLERK
妾AFCAT
© SSC JE
© CTET
© CSIR UGC Net

(2) CAPF

itz IBPS RRB

EQUATION IN A LINE

General Equation of a Line

The general equation of a line in two variables of the first degree is represented as
$A x+B y+C=0$,
$A, B \neq 0$ where A, B and C are constants which belong to real numbers.
When we represent the equation geometrically, we always get a straight line.
Below is a representation of straight-line formulas in different forms:

Equations of horizontal and vertical lines

Equation of the lines which are horizontal or parallel to the X-axis is $y=a$, where a is the $y-$ coordinate of the points on the line.

Similarly, equation of a straight line which is vertical or parallel to Y-axis is $x=a$, where a is the x-coordinate of the points on the line.

For example, the equation of the line which is parallel to X-axis and contains the point $(2,3)$ is $y=3$.
Similarly, the equation of the line which is parallel to Y-axis and contains the point $(3,4)$ is $x=3$.

Point-slope form equation of line

Consider a non-vertical line L whose slope is $m, A(x, y)$ be an arbitrary point on the line and $P\left(x_{1}, y_{1}\right)$ be the fixed point on the same line.

Slope of the line by the definition is,
$m=\frac{y-y_{1}}{x-x_{1}}$
$y-y_{1}=m\left(x-x_{1}\right)$
For example, equation of the straight line having a slope $m=2$ and passes through the point $(2,3)$ is $y-3=2(x-2)$
$y=2 x-4+3$
$2 x-y-1=0$

Two-point form equation of line

Let $P(x, y)$ be the general point on the line L which passes through the points $A\left(x_{1}, y_{1}\right)$ and $B\left(x_{2}, y_{2}\right)$.

Since the three points are collinear,
slope of PA = slope of AB
$y-y_{1}=y_{2}-y_{1}$
$x-x_{1} \quad x_{2}-x_{1}$
$y-y_{1}=\left(y_{2}-y_{1}\right) \cdot \frac{x-x_{1}}{x_{2}-x_{1}}$

Slope-intercept Form

We know that the equation of a straight line in slope-intercept form is given as:
$y=m x+c$
Where m indicates the slope of the line and c is the y-intercept
When $B \neq 0$ then, the standard equation of first degree $A x+B y+C=0$ can be rewritten in slope-intercept form as:
$y=(-A / B) x-(C / B)$
Thus, $m=-A / B$ and $c=-C / B$

Intercept Form

The intercept of a line is the point through which the line crosses the x-axis or y-axis. Suppose a line cuts the x-axis and y-axis at $(a, 0)$ and $(0, b)$, respectively. Then, the equation of a line making intercepts equal to a and b on the x-axis and the y-axis respectively is given by:

$x / a+y / b=1$

Now in case of the general form of the equation of the straight line, i.e., $A x+B y+C=0$, if $C \neq 0$, then $A x+B y+C=0$ can be written as;
$x /(-C / A)+y /(-C / B)=1$
where $a=-C / A$ and $b=-C / B$

Normal Form

The equation of the line whose length of the perpendicular from the origin is p and the angle made by the perpendicular with the positive x-axis is given by α is given by:

$x \cos \alpha+y \sin \alpha=p$

This is known as the normal form of the line.
In case of the general form of the line $A x+B y+C=0$ can be represented in normal form as:
$A \cos \alpha=B \sin \alpha=-p$
From this we can say that $\cos \alpha=-p / A$ and $\sin \alpha=-p / B$.
Also it can be inferred that,
$\cos ^{2} \alpha+\sin ^{2} \alpha=(p / A)^{2}+(p / B)^{2}$
$1=p^{2}\left(A^{2}+B^{2} / A^{2} . B^{2}\right)$
$\Rightarrow p=\left(\frac{A B}{\sqrt{A^{2}+B^{2}}}\right)$
From the general equation of a straight line $A x+B y+C=0$, we can conclude the following:

- The slope is given by $-A / B$, given that $B \neq 0$.
- The x-intercept is given by $-C / A$ and the y-intercept is given by $-C / B$.
- It can be seen from the above discussion that:
$p= \pm \frac{A B}{\sqrt{A^{2}+B^{2}}}, \cos \alpha= \pm \frac{B}{\sqrt{A^{2}+B^{2}}}, \sin \alpha= \pm \frac{A}{\sqrt{A^{2}+B^{2}}}$
- If two points $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ and $\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$ are said to lie on the same side of the line $\mathrm{Ax}+\mathrm{By}+\mathrm{C}=0$, then the expressions $A x_{1}+B y_{1}+C$ and $A x_{2}+B y_{2}+C$ will have the same sign or else these points would lie on the opposite sides of the line.

Straight Line Formulas

Slope (m) of a non-vertical line passing through the points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$	$m=\left(y_{2}-y_{1}\right) /\left(x_{2}-x_{1}\right), x_{1} \neq x_{2}$
Equation of a horizontal line	$y=a$ or $y=-a$
Equation of a vertical line	$x=b$ or $x=-b$
Equation of the line passing through the points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}\right.$, $\left.y_{2}\right)$	$y-y_{1}=\left[\left(y_{2}-y_{1}\right) /\left(x_{2}-x_{1}\right)\right] \times\left(x-x_{1}\right)$
Equation of line with slope m and intercept c	$y=m x+c$
Equation of line with slope m makes x-intercept d.	$y=m(x-d)$.
Intercept form of the equation of a line	$(x / a)+(y / b)=1$
The normal form of the equation of a line	$x \cos \alpha+y \sin \alpha=p$

Equation of a Line in Three Dimensions

Equation of a line is defined as $y=m x+c$, where c is the y-intercept and m is the slope. Vectors can be defined as a quantity possessing both direction and magnitude. Position vectors simply denote the position or location of a point in the three-dimensional Cartesian system with respect to a reference origin. It is known that we can uniquely determine a line if:

- It passes through a particular point in a specific direction, or
- It passes through two unique points

Equation of a Line passing through a point and parallel to a vector

Let us consider that the position vector of the given point be \vec{a} with respect to the origin. The line passing through point A is given by / and it is parallel to the vector \vec{k} as shown below. Let us choose any random point R on the line /and its position vector with respect to origin of the rectangular co-ordinate system is given by \vec{r}.

Since the line segment, $\overline{A R}$ is parallel to vector \vec{k}, therefore for any real number α,
$\overline{A R}=\alpha \vec{k}$
Also, $\overline{A R}=\overline{O R}-\overline{O A}$
Therefore, $\alpha \vec{r}=\vec{r}-\vec{a}$
From the above equation it can be seen that for different values of α, the above equations give the position of any arbitrary point R lying on the line passing through point A and parallel to vector k. Therefore, the vector equation of a line passing through a given point and parallel to a given vector is given by:

$$
\vec{r}=\vec{a}+\alpha \vec{k}
$$

If the three-dimensional co-ordinates of the point ' A ' are given as (x_{1}, y_{1}, z_{1}) and the direction cosines of this point is given as a, b, c then considering the rectangular co-ordinates of point R as (x, $y, z)$:

$$
\begin{gathered}
\vec{r}=x \hat{\imath}+y \hat{\jmath}+z \hat{k} \\
\vec{a}=x_{1} \hat{\imath}+y_{1} \hat{\jmath}+z_{1} \hat{k} \\
\vec{b}=a \hat{\imath}+b \hat{\jmath}+c \hat{k}
\end{gathered}
$$

Substituting these values in the vector equation of a line passing through a given point and parallel to a given vector and equating the coefficients of unit vectors i, j and k, we have,

$$
x=x_{1}+\alpha \mathrm{a} ; y=y_{1}+\alpha \mathrm{b} ; \mathrm{z}=\mathrm{z}_{1}+\alpha \mathrm{c}
$$

Eliminating α we have:

$$
\frac{x-x_{1}}{a}=\frac{y-y_{1}}{b}=\frac{z-z_{1}}{c}
$$

This gives us the Cartesian equation of line.

Equation of a Line passing through two given points

Let us consider that the position vector of the two given points A and B be $a \overrightarrow{a n d} b \vec{b}$ with respect to the origin. Let us choose any random point R on the line and its position vector with respect to origin of the rectangular co-ordinate system is given by \vec{r}.

Point R lies on the line AB if and only if the vectors $\overline{A R}$ and $\overline{A B}$ are collinear. Also,
$\overline{A R}=\vec{r}-\vec{a}$
$\overline{A B}=\vec{b}-\vec{a}$
Thus, R lies on $A B$ only if;
$\vec{r}-\vec{a}=\alpha(b-\vec{a})$
Here α is any real number.
From the above equation it can be seen that for different values of α, the above equation gives the position of any arbitrary point R lying on the line passing through point A and B. Therefore, the vector equation of a line passing through two given points is given by:
$\vec{r}=\vec{a}+\alpha(b-a \vec{a})$
If the three-dimensional coordinates of the points A and B are given as $\left(x_{1}, y_{1}, z_{1}\right)$ and $\left(x_{2}, y_{2}, z_{2}\right)$ then considering the rectangular co-ordinates of point R as (x, y, z)

$$
\begin{gathered}
\vec{r}=x \hat{\imath}+y_{\hat{\jmath}}+z \hat{k} \\
\vec{a}=x_{1} \hat{\imath}+y_{1} \hat{\jmath}+z_{1} \hat{k} \\
\vec{b}=x_{2} \hat{\imath}+y_{2} \hat{\jmath}+z_{2} \hat{k}
\end{gathered}
$$

Substituting these values in the vector equation of a line passing through two given points and equating the coefficients of unit vectors i, j and k , we have

$$
x=x_{1}+\alpha\left(\mathrm{x}_{2}-\mathrm{x}_{1}\right) ; y=y_{1}+\alpha\left(\mathrm{y}_{2}-\mathrm{y}_{1}\right) ; \mathrm{z}=\mathrm{z}_{1}+\alpha\left(\mathrm{z}_{2}-\mathrm{z}_{1}\right)
$$

Eliminating a we have:

$$
\frac{x-x_{1}}{x_{2}-x_{1}}=\frac{y-y_{1}}{y_{2}-y_{1}}=\frac{z-z_{1}}{z_{2}-z_{1}}
$$

This gives us the Cartesian equation of a line.

Solved Examples

Example 1: The equation of a line is given by, $2 x-6 y+3=0$. Find the slope and both the intercepts.

Solution:

The given equation $2 x-6 y+3=0$ can be represented in slope-intercept form as:
$y=x / 3+1 / 2$
Comparing it with $\mathrm{y}=\mathrm{mx}+\mathrm{c}$,
Slope of the line, $m=1 / 3$
Also, the above equation can be re-framed in intercept form as;
$x / a+y / b=1$
$2 x-6 y=-3$
$x /(-3 / 2)-y /(-1 / 2)=1$
Thus, x-intercept is given as $a=-3 / 2$ and y-intercept as $b=1 / 2$.

Example 2: The equation of a line is given by, $13 x-y+12=0$. Find the slope and both the intercepts.

Solution: The given equation $13 x-y+12=0$ can be represented in slope-intercept form as:
$y=13 x+12$
Comparing it with $\mathrm{y}=\mathrm{mx}+\mathrm{c}$,
Slope of the line, $m=13$
Also, the above equation can be re-framed in intercept form as;
$x / a+y / b=1$
$13 x-y=-12$
$x /(-12 / 13)+y / 12=0$
Thus, x -intercept is given as $\mathrm{a}=-12 / 13$ and y -intercept as $\mathrm{b}=12$.

prepp

Latest Sarkari jobs,
 Govt Exam alerts,
 Results and Vacancies

> Latest News and Notification

- Exam Paper Analysis
- Topic-wise weightage
- Previous Year Papers with Answer Key
- Preparation Strategy \& Subject-wise Books

To know more Click Here

