## prepp

## Practice, Learn and Achieve Your Goal with Prepp

## NDA Exam

Study Material for Maths

## Simplifying <br> Government Exams

© SSC CHSL

© SSC CGL

(1) SBIPO
it ibps CLERK
意AFCAT © SSCJE CTET
© CPIR UGC NET

## (1)CAPF

itz IBPS RRB

## LOGARITHMS

- A logarithm of a number with a base is equal to another number. A logarithm is just the opposite function of exponentiation. For example, if $10^{2}=100$ then $\log _{10} 100=2$.
- Hence, we can conclude that,

$$
\log _{b} x=n \text { or } b^{n}=x
$$

Where $b$ is the base of the logarithmic function.

- A logarithm is defined as the power to which number must be raised to get some other values. It is the most convenient way to express large numbers. A logarithm has various important properties that prove multiplication and division of logarithms can also be written in the form of logarithm of addition and subtraction.
- The logarithm of a positive real number a with respect to base $b$, a positive real number not equal to $1^{[n \mathrm{~b} 1]}$, is the exponent by which $b$ must be raised to yield $a$.
i.e $\mathbf{b}^{\mathrm{y}}=\mathbf{a}$ and it is read as "the logarithm of a to base $\mathbf{b}$."
- In other words, the logarithm gives the answer to the question "How many times a number is multiplied to get the other number?".


## Example: How many 3's are multiplied to get the answer 27?

If we multiply 3 for 3 times, we get the answer 27 .
Therefore, the logarithm is 3 .
The logarithm form is written as follows:
$\log _{3}(27)=3$....(1)
Therefore, the base 3 logarithm of 27 is 3.
The above logarithm form can also be written as:
$3 \times 3 \times 3=27$
$3^{3}=27 \ldots$. (2)
Thus, the equations (1) and (2) both represent the same meaning.

## Logarithm Types

In most cases, we always deal with two different types of logarithms, namely

- Common Logarithm
- Natural Logarithm


## Common Logarithm

The common logarithm is also called the base 10 logarithms. It is represented as $\log 10$ or simply log. For example, the common logarithm of 1000 is written as a $\log$ (1000). The common logarithm defines how many times we have to multiply the number 10, to get the required output.

For example, $\log (100)=2$
If we multiply the number 10 twice, we get the result 100 .

## Natural Logarithm

The natural logarithm is called the base e logarithm. The natural logarithm is represented as In or loge. Here, "e" represents the Euler's constant which is approximately equal to 2.71828 . For example, the natural logarithm of 78 is written as $\ln 78$. The natural logarithm defines how many we have to multiply " e " to get the required output.

For example, $\ln (78)=4.357$.
Thus, the base e logarithm of 78 is equal to 4.357 .

## Logarithm Rules and Properties

There are certain rules based on which logarithmic operations can be performed. The names of these rules are:

- Product rule
- Division rule
- Power rule/Exponential Rule
- Change of base rule
- Base switch rule
- Derivative of log
- Integral of log

Let us have a look at each of these properties one by one

## Product Rule

In this rule, the multiplication of two logarithmic values is equal to the addition of their individual logarithms.
$\log _{b}(m n)=\log _{b} m+\log _{b} n$
For example: $\log _{3}(2 y)=\log _{3}(2)+\log _{3}(y)$

## Division Rule

The division of two logarithmic values is equal to the difference of each logarithm.

## $\log _{b}(m / n)=\log _{b} m-\log _{b} n$

For example, $\log _{3}(2 / y)=\log _{3}(2)-\log _{3}(y)$

## Exponential Rule

In the exponential rule, the logarithm of $m$ with a rational exponent is equal to the exponent times its logarithm.
$\log _{b}\left(m^{n}\right)=n \log _{b} m$
For example: $\log _{\mathrm{b}}\left(2^{3}\right)=3 \log _{\mathrm{b}} 2$

## Change of Base Rule

$\log _{b} m=\log _{a} m / \log _{a} b$
For example: $\log _{\mathrm{b}} 2=\log _{\mathrm{a}} 2 / \log _{\mathrm{a}} \mathrm{b}$

## Base Switch Rule

$\log _{b}(a)=1 / \log _{a}(b)$
For example: $\log _{b} 8=1 / \log _{8} \mathrm{~b}$

## Derivative of log

If $f(x)=\log _{b}(x)$, then the derivative of $f(x)$ is given by;
$f^{\prime}(x)=1 /(x \ln (b))$
For example: Given, $\mathrm{f}(\mathrm{x})=\log _{10}(\mathrm{x})$
Then, $f^{\prime}(x)=1 /(x \ln (10))$

## Integral of Log

$\int \log _{b}(x) d x=x\left(\log _{b}(x)-1 / \ln (b)\right)+C$
Example: $\int \log _{10}(x) d x=x \cdot\left(\log _{10}(x)-1 / \ln (10)\right)+C$

## Other Properties

Some other properties of logarithmic functions are:

- $\log _{b} \mathrm{~b}=1$
- $\log _{b} 1=0$
- $\log _{\mathrm{b}} 0=$ undefined


## Logarithmic Formulas

$\log _{b}(m n)=\log _{b}(m)+\log _{b}(n)$
$\log _{b}(m / n)=\log _{b}(m)-\log _{b}(n)$
$\log _{b}(x y)=y \log _{b}(x)$
$\log _{b} m \sqrt{ } n=\log _{b} n / m$
$m \log _{b}(x)+n \log _{b}(y)=\log _{b}\left(x^{m} y^{n}\right)$
$\log _{b}(m+n)=\log _{b} m+\log _{b}(1+n m)$
$\log _{b}(m-n)=\log _{b} m+\log _{b}(1-n / m)$

## Solved Examples

Question 1: Solve $\log _{2}(64)=$ ?

## Solution:

since $2^{6}=2 \times 2 \times 2 \times 2 \times 2 \times 2=64,6$ is the exponent value and $\log _{2}(64)=6$.

## Question 2: What is the value of $\log _{10}(100)$ ?

Solution: In this case, $10^{2}$ yields you 100 . So, 2 is the exponent value, and the value of $\log _{10}(100)=2$

## Question 3: Use of the property of logarithms, solve for the value of $x$ for $\log _{3} x=\log _{3} 4+\log _{3} 7$

Solution: By the addition rule, $\log _{3} 4+\log _{3} 7=\log _{3}(4 * 7)$
$\log _{3}(28)$. Thus, $x=28$.

## Question 4: Solve for x in $\log _{2} \mathrm{x}=5$

Solution: This logarithmic function can be written In the exponential form as $2^{5}=x$
Therefore, $2^{5}=2 \times 2 \times 2 \times 2 \times 2=32, X=32$.

## Logarithmic Function Definition

The logarithmic function is defined as an inverse function to exponentiation. The logarithmic function is stated as follows

For $\mathrm{x}, \mathrm{a}>0$, and $\mathrm{a} \neq 1$,
$y=\log _{a} x$, if $x=a^{y}$
Then the logarithmic function is written as:
$f(x)=\log _{a} x$
The most common bases used in logarithmic functions are base e and base 10. The log function with base 10 is called the common logarithmic function and it is denoted by $\log _{10}$ or simply log.
$\mathrm{f}(\mathrm{x})=\boldsymbol{\operatorname { l o g }}_{10}$
The log function to the base e is called the natural logarithmic function and it is denoted by $\log _{e}$
$f(x)=\log _{e} x$
To find the logarithm of a number, we can use the logarithm table instead of using a mere calculation. Before finding the logarithm of a number, we should know about the characteristic part and mantissa part of a given number:

- Characteristic Part - The whole part of a number is called the characteristic part. The characteristic of any number greater than one is positive, and if it is one less than the number of digits to the left of the decimal point in a given number. If the number is less than one, the characteristic is negative and is one more than the number of zeros to the right of the decimal point.
- Mantissa Part - The decimal part of the logarithm number is said to be the mantissa part and it should always be a positive value. If the mantissa part is in a negative value, then convert into the positive value.

|  | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | Mean Difference |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |  | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| 10 | 0000 | 0043 | 0086 | 0128 | 0170 | 0212 | 0253 | 0294 | 0334 | 0374 | 4 | 8 | 12 | 17 | 21 | 25 | 29 | 33 | 37 |
| 11 | 0414 | 0453 | 0492 | 0531 | 0569 | 0607 | 0645 | 0682 | 0719 | 0755 | 4 | 8 | 11 | 15 | 19 | 23 | 26 | 30 | 34 |
| 12 | 0792 | 0828 | 0864 | 0899 | 0934 | 0969 | 1004 | 1038 | 1072 | 1106 | 3 | 7 | 10 | 14 | 17 | 21 | 24 | 28 | 31 |
| 13 | 1139 | 1173 | 1206 | 1239 | 1271 | 1303 | 1335 | 1367 | 1399 | 1430 | 3 | 6 | 10 | 13 | 16 | 19 | 23 | 26 | 29 |
| 14 | 1461 | 1492 | 1523 | 1553 | 1584 | 1614 | 1644 | 1673 | 1703 | 1732 | 3 | 6 | 9 | 12 | 15 | 18 | 21 | 24 | 27 |
| 15 | 1761 | 1790 | 1818 | 1847 | 1875 | 1903 | 1931 | 1959 | 1987 | 2014 | 3 | 6 | 8 | 11 | 14 | 17 | 20 | 22 | 25 |
| 16 | 2041 | 2068 | 2095 | 2122 | 2148 | 2175 | 2201 | 2227 | 2253 | 2279 | 3 | 5 | 8 | 11 | 13 | 16 | 18 | 21 | 24 |
| 17 | 2304 | 2330 | 2355 | 2380 | 2405 | 2430 | 2455 | 2480 | 2504 | 2529 | 2 | 5 | 7 | 10 | 12 | 15 | 17 | 20 | 22 |
| 18 | 2553 | 2577 | 2601 | 2625 | 2648 | 2672 | 2695 | 2718 | 2742 | 2765 | 2 | 5 | 7 | 9 | 12 | 14 | 16 | 19 | 21 |
| 19 | 2788 | 2810 | 2833 | 2856 | 2878 | 2900 | 2923 | 2945 | 2967 | 2989 | 2 | 4 | 7 | 9 | 11 | 13 | 16 | 18 | 20 |
| 20 | 3010 | 3032 | 3054 | 3075 | 3096 | 3118 | 3139 | 3160 | 3181 | 3201 | 2 | 4 | 6 | 8 | 11 | 13 | 15 | 17 | 19 |
| 21 | 3222 | 3243 | 3263 | 3284 | 3304 | 3324 | 3345 | 3365 | 3385 | 3404 | 2 | 4 | 6 | 8 | 10 | 12 | 14 | 16 | 18 |
| 22 | 3424 | 3444 | 3464 | 3483 | 3502 | 3522 | 3541 | 3560 | 3579 | 3598 | 2 | 4 | 6 | 8 | 10 | 12 | 14 | 15 | 17 |
| 23 | 3617 | 3636 | 3655 | 3674 | 3692 | 3711 | 3729 | 3747 | 3766 | 3784 | 2 | 4 | 6 | 7 | 9 | 11 | 13 | 15 | 17 |
| 24 | 3802 | 3820 | 3838 | 3856 | 3874 | 3892 | 3909 | 3927 | 3945 | 3962 | 2 | 4 | 5 | 7 | 9 | 11 | 12 | 14 | 16 |
| 25 | 3979 | 3997 | 4014 | 4031 | 4048 | 4065 | 4082 | 4099 | 4116 | 4133 | 2 | 3 | 5 | 7 | 9 | 10 | 12 | 14 | 15 |
| 26 | 4150 | 4166 | 4183 | 4200 | 4216 | 4232 | 4249 | 4265 | 4281 | 4298 | 2 | 3 | 5 | 7 | 8 | 10 | 11 | 13 | 15 |
| 27 | 4314 | 4330 | 4346 | 4362 | 4378 | 4393 | 4409 | 4425 | 4440 | 4456 | 2 | 3 | 5 | 6 | 8 | 9 | 11 | 13 | 14 |
| 28 | 4472 | 4487 | 4502 | 4518 | 4533 | 4548 | 4564 | 4579 | 4594 | 4609 | 2 | 3 | 5 | 6 | 8 | 9 | 11 | 12 | 14 |
| 29 | 4624 | 4639 | 4654 | 4669 | 4683 | 4698 | 4713 | 4728 | 4742 | 4757 | 1 | 3 | 4 | 6 | 7 | 9 | 10 | 12 | 13 |
| 30 | 4771 | 4786 | 4800 | 4814 | 4829 | 4843 | 4857 | 4871 | 4886 | 4900 | 1 | 3 | 4 | 6 | 7 | 9 | 10 | 11 | 13 |
| 31 | 4914 | 4928 | 4942 | 4955 | 4969 | 4983 | 4997 | 5011 | 5024 | 5038 | 1 | 3 | 4 | 6 | 7 | 8 | 10 | 11 | 12 |
| 32 | 5051 | 5065 | 5079 | 5092 | 5105 | 5119 | 5132 | 5145 | 5159 | 5172 | 1 | 3 | 4 | 5 | 7 | 8 | 9 | 11 | 12 |
| 33 | 5185 | 5198 | 5211 | 5224 | 5237 | 5250 | 5263 | 5276 | 5289 | 5302 | 1 | 3 | 4 | 5 | 6 | 8 | 9 | 10 | 12 |
| 34 | 5315 | 5328 | 5340 | 5353 | 5366 | 5378 | 5391 | 5403 | 5416 | 5428 | , | 3 | 4 | 5 | 6 | 8 | 9 | 10 | 11 |
| 35 | 5441 | 5453 | 5465 | 5478 | 5490 | 5502 | 5514 | 5527 | 5539 | 5551 | 1 | 2 | 4 | 5 | 6 | 7 | 9 | 10 | 11 |
| 36 | 5563 | 5575 | 5587 | 5599 | 5611 | 5623 | 5635 | 5647 | 5658 | 5670 | 1 | 2 | 4 | 5 | 6 | 7 | 8 | 10 | 11 |
| 37 | 5682 | 5694 | 5705 | 5717 | 5729 | 5740 | 5752 | 5763 | 5775 | 5786 | 1 | 2 | 3 | 5 | 6 | 7 | 8 | 9 | 10 |
| 38 | 5798 | 5809 | 5821 | 5832 | 5843 | 5855 | 5866 | 5877 | 5888 | 5899 | 1 | 2 | 3 | 5 | 6 | 7 | 8 | 9 | 10 |
| 39 | 5911 | 5922 | 5933 | 5944 | 5955 | 5966 | 5977 | 5988 | 5999 | 6010 | 1 | 2 | 3 | 4 | 5 | 7 | 8 | 9 | 10 |
| 40 | 6021 | 6031 | 6042 | 6053 | 6064 | 6075 | 6085 | 6096 | 6107 | 6117 | 1 | 2 | 3 | 4 | 5 | 6 | 8 | 9 | 10 |
| 41 | 6128 | 6138 | 6149 | 6160 | 6170 | 6180 | 6191 | 6201 | 6212 | 6222 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| 42 | 6232 | 6243 | 6253 | 6263 | 6274 | 6284 | 6294 | 6304 | 6314 | 6325 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| 43 | 6335 | 6345 | 6355 | 6365 | 6375 | 6385 | 6395 | 6405 | 6415 | 6425 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| 44 | 6435 | 6444 | 6454 | 6464 | 6474 | 6484 | 6493 | 6503 | 6513 | 6522 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| 45 | 6532 | 6542 | 6551 | 6561 | 6571 | 6580 | 6590 | 6599 | 6609 | 6618 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| 46 | 6628 | 6637 | 6646 | 6656 | 6665 | 6675 | 6684 | 6693 | 6702 | 6712 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 7 | 8 |
| 47 | 6721 | 6730 | 6739 | 6749 | 6758 | 6767 | 6776 | 6785 | 6794 | 6803 | 1 | 2 | 3 | 4 | 5 | 5 | 6 | 7 | 8 |
| 48 | 6812 | 6821 | 6830 | 6839 | 6848 | 6857 | 6866 | 6875 | 6884 | 6893 | 1 | 2 | 3 | 4 | 4 | 5 | 6 | 7 | 8 |
| 49 | 6902 | 6911 | 6920 | 6928 | 6937 | 6946 | 6955 | 6964 | 6972 | 6981 | 1 | 2 | 3 | 4 | 4 | 5 | 6 | 7 | 8 |
| 50 | 6990 | 6998 | 7007 | 7016 | 7024 | 7033 | 7042 | 7050 | 7059 | 7067 | 1 | 2 | 3 | 3 | 4 | 5 | 6 | 7 | 8 |

## How to Use the Log Table?

The procedure is given below to find the log value of a number using the log table. First, you have to know how to use the log table. The log table is given for the reference to find the values.

Step 1: Understand the concept of the logarithm. Each log table is only usable with a certain base. The most common type of logarithm table is used is log base 10.

Step 2: Identify the characteristic part and mantissa part of the given number. For example, if you want to find the value of $\log _{10}$ (15.27), first separate the characteristic part and the mantissa part.

Characteristic Part $=15$
Mantissa part $=27$

Step 3: Use a common log table. Now, use row number 15 and check column number 2 and write the corresponding value. So the value obtained is 1818.

Step 4: Use the logarithm table with a mean difference. Slide your finger in the mean difference column number 7 and row number 15, and write down the corresponding value as 20.

| 15.27 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| N | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | Mean Difference |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  | 1 | 2 | 3 | 4 | 5 | 6 | 7 |  |
| 13 | 1139 | 1173 | 1206 | 1239 | 1271 | 1303 | 1335 | 1367 | 1399 | 1430 | 3 | 6 | 10 | 13 | 16 | 19 | 23 |  |
| 14 | 1431 | 1492 | 1523 | 1553 | 1584 | 1614 | 1644 | 1673 | 1703 | 1732 | 3 | 6 | 9 | 12 | 15 | 18 | 21 |  |
| 15 | 1761 | 1790 | 1818 | 1847 | 1875 | 1903 | 1931 | 1959 | 1987 | 2014 | 3 | 6 | 8 | 11 | 14 | 17 | 20 | $)$ |
| 16 | 2041 | 2068 | 2095 | 2122 | 2148 | 2175 | 2201 | 2227 | 2253 | 2279 | 3 | 5 | 8 | 11 | 13 | 16 | 7 |  |
| 17 | 2304 | 2330 | 2355 | 2380 | 2405 | 2430 | 2455 | 2480 | 2504 | 2529 | 2 | 5 | 7 | 9 | 12 | 6 | 7 |  |

Step 5: Add both the values obtained in step 3 and step 4. That is $1818+20=1838$. Therefore, the value 1838 is the mantissa part.


Step 6: Find the characteristic part. Since the number lies between 10 and $100,\left(10^{1}\right.$ and $\left.10^{2}\right)$, the characteristic part should be 1.

Step 7: Finally combine both the characteristic part and the mantissa part, it becomes 1.1838.


## Example: Find the value of $\log _{10} 2.872$

## Solution:

Step 1: Characteristic Part= 2 and mantissa part $=872$
Step 2: Check the row number 28 and column number 7 . So the value obtained is 4579 .
Step 3: Check the mean difference value for row number 28 and mean difference column 2 . The value corresponding to the row and column is 3

Step 4: Add the values obtained in step 2 and 3 , we get 4582 . This is the mantissa part.
Step 5: Since the number of digits to the left side of the decimal part is 1 , the characteristic part is less than 1 . So, the characteristic part is 0

Step 6: Finally combine the characteristic part and the mantissa part. So, it becomes 0.4582.
Therefore, the value of $\log 2.872$ is 0.4582 .

## Logarithmic Differentiation

Logarithmic differentiation is a method to find the derivatives of some complicated functions, using logarithms. There are cases in which differentiating the logarithm of a given function is simpler as compared to differentiating the function itself. By the proper usage of properties of logarithms and chain rule finding, the derivatives become easy. This concept is applicable to nearly all the non-zero functions which are differentiable in nature.
Therefore, in calculus, the differentiation of some complex functions is done by taking logarithms and then the logarithmic derivative is utilized to solve such a function.

## Logarithmic Differentiation Formula

The equations which take the form $y=f(x)=[u(x)]^{\{v(x)\}}$ can be easily solved using the concept of logarithmic differentiation. The formula for log differentiation of a function is given by;

## $d / d x\left(x^{x}\right)=x^{x}(1+\ln x)$

For differentiating functions of this type we take on both the sides of the given equation.
Therefore, taking $\log$ on both sides we get, $\log y=\log [u(x)]^{[(x)]\}}$

## $\log y=v(x) \log u(x)$

Now, differentiating both the sides w.r.t. $x$ by implementing chain rule, we get

$$
\begin{aligned}
& \frac{1}{y} \frac{d y}{d x}=v(x) \times \frac{1}{u(x)} \times u^{\prime}(x)+\log u(x) \times v^{\prime}(x) \\
& \Rightarrow \frac{d y}{d x}=y\left[v(x) \times \frac{1}{u(x)} \times u^{\prime}(x)+\log u(x) \times v^{\prime}(x)\right]
\end{aligned}
$$

The only constraint for using logarithmic differentiation rules is that $f(x)$ and $u(x)$ must be positive as logarithmic functions are only defined for positive values.

The basic properties of real logarithms are generally applicable to the logarithmic derivatives.

For example: $(\log \mathrm{uv})^{\prime}=(\log \mathrm{u}+\log \mathrm{v})^{\prime}=(\log \mathrm{u})^{\prime}+(\log \mathrm{v})^{\prime}$

## Method to Solve Logarithm Functions

Follow the steps given here to solve find the differentiation of logarithm functions.

- Find the natural log of the function first which is needed to be differentiated.
- Now by the means of properties of logarithmic functions, distribute the terms that were originally gathered together in the original function and were difficult to differentiate.
- Now differentiate the equation which was resulted.
- At last, multiply the available equation by the function itself to get the required derivative.

Now, as we are thorough with logarithmic differentiation rules let us take some logarithmic differentiation examples to know a little bit more about this.

## Example: Find the value of $d y / d x$ if,[latex]y $=\mathrm{e}^{\wedge}\left\{x^{\wedge}\{4\}\right\}[/$ latex]

Solution: Given the function [latex]y $=\mathrm{e}^{\wedge}\left\{\mathrm{x}^{\wedge}\{4\}\right\}[/$ latex]
Taking natural logarithm of both the sides we get,
$\ln y=\ln e^{x 4}$
$\ln y=x^{4} \ln e$
$\ln y=x^{4}$
Now, differentiating both the sides w.r.t we get,
[latex]\frac\{1\}\{y\} \frac\{dy\}\{dx\}[/latex] = [latex]4x^3 [/latex]
[latex] \Rightarrow $\backslash$ frac\{dy\}\{dx\}[//latex] =[latex] y.4x^3[/latex]
[latex] $\backslash$ Rightarrow $\backslash$ frac $\{d y\}\{d x\}\left[/\right.$ latex] $=[$ latex $] e^{\wedge}\left\{x^{\wedge}\{4\}\right\} \times 4 x^{\wedge} 3[/$ latex]
Therefore, we see how easy and simple it becomes to differentiate a function using logarithmic differentiation rules.

Example: Find the value of [latex] $\backslash$ frac $\{d y\}\{d x\}\left[/\right.$ latex] if $y=2 \mathbf{x}^{\{\cos x\}}$.
Solution: Given the function $y=2 x^{\{\cos x\}}$
Taking logarithm of both the sides, we get
$\log y=\log \left(2 x^{\{\cos x\}}\right)$
[latex] $\backslash$ Rightarrow $\log y=\log 2+\log x^{\wedge}\{\cos x\} \backslash \backslash(A s \backslash \log (m n)=\log m+\log n)[/ \operatorname{latex}]$
[latex] ${ }^{\text {Rightarrow }} \log y=\log 2+\cos x \times \log x \backslash \backslash\left(A s \backslash \log m^{\wedge} n=n \log m\right)[/ \operatorname{latex}]$
Now, differentiating both the sides w.r.t by using the chain rule we get, $[$ latex $] \backslash f r a c\{1\}\{y\} \backslash f r a c\{d y\}\{d x\}=\backslash \operatorname{frac}\{\cos x\}\{x\}-(\sin x)(\log x)[/ l a t e x]$

## Log and Ln Definition

Log: In Maths, the logarithm is the inverse function of exponentiation. In simpler words, the logarithm is defined as a power to which a number must be raised in order to get some other number. It is also called the logarithm of base 10, or common logarithm. The general form of a logarithm is given as:

## $\log _{a}(y)=x$

The above-given form is written as:

$$
a^{x}=y
$$

## Rules of Logarithm

There are four major rules or properties of the logarithm.

- $\log _{b}(m n)=\log _{b} m+\log _{b} n$
- $\log _{b}(m / n)=\log _{b} m-\log _{b} n$
- $\log _{b}\left(m^{n}\right)=n \log _{b} m$
- $\log _{b} m=\log _{a} m / \log _{a} b$
$\operatorname{Ln}: \mathrm{Ln}$ is called the natural logarithm. It is also called the logarithm of the base e. Here, e is a number which is an irrational and transcendental number and is approximately equal to $2.718281828459 \ldots$. The natural logarithm $(\ln )$ is represented as $\ln \mathbf{x}$ or $\log _{e} \mathbf{x}$

Key Differences Between Log and Ln

| Log | Ln |
| :--- | :--- |
| Log refers to a logarithm to the base 10 | Ln refers to a logarithm to the base e |
| This is also called as a common logarithm | This is also called as a natural logarithm |
| The common log is represented as $\log _{10}(\mathrm{x})$ | The natural log is represented as $\log _{\mathrm{e}}(\mathrm{x})$ |
| The exponent form of the common logarithm is <br> $10^{\times}=y$ | The exponent form of the natural logarithm is <br> $\mathrm{e}^{\times}=\mathrm{y}$ |
| The interrogative statement for the common <br> logarithm is "At which number should we raise <br> 10 to get y?" | The interrogative statement for the natural <br> logarithm is "At which number should we raise <br> Euler's constant number to get y?" |
| It is more widely used in physics when <br> compared to In | As logarithms are usually taken to the base in <br> physics, In is used much lesser |
| Mathematically, it is represented as log base 10 | Mathematically, this is represented as log base e |

## Antilog Table

The Antilog which is also known as "Anti- Logarithms", of a number is the inverse technique of finding the logarithm of the same number. Consider, if $x$ is the logarithm of a number $y$ with base $b$, then we can say y is the antilog of x to the base b . It is defined by

$$
\text { If } \log _{b} y=x \quad \text { Then, } y=\text { antilog } x
$$

Both logarithm and antilog have their base as 2.7183. If the logarithm and antilogarithm are having their base 10 , that should be converted into natural logarithm and antilog by multiplying it by 2.303 .

## How to Calculate Antilog?

Before finding the antilog of a number, we should know about the parts like the characteristic and mantissa part.

- Characteristic Part - The whole part is called the characteristic part. If the characteristic of logarithm of any number greater than one is positive and is one less than the number of digits in the left side of the decimal point.
- Mantissa Part - The decimal part of the logarithm number for a given number is called the mantissa part, and it should always be a positive value. If the mantissa part is in a negative value, convert into the positive value.


## Procedure to Find the Antilog of a Number

## Method 1: Using an Antilog Table

## Consider a number, 2.6452

Step 1: Separate the characteristic part and the mantissa part. From the given example, the characteristic part is 2 , and the mantissa part is 6452 .

Step 2: To find a corresponding value of the mantissa part uses the antilog table. Using the antilog table, find the corresponding value. Now, find the row number that starts with .64, then the column for 5 . Now, you get the corresponding value as 4416.

Step 3: From mean difference columns find the value. Again use the same row number . 64 and find the value for column 2. Now, the value corresponding to this is 2 .
Step 4: Add the values obtained in step 2 and 3 , we get $4416+2=4418$.
Step 5: Now insert the decimal point. The decimal point always goes the designated place. For this, you have to add 1 to the characteristic value. Now you get 3 . Then add the decimal point after 3 digits, we get 441.8

So, the antilog value of 2.6452 is 441.8 .

## Method 2: Antilog Calculation

Step 1: Separate the characteristic part and the mantissa part. From the above example given, the characteristic part is 2 , and the mantissa part is 6452 .

Step 2: Know the base. For numerical computations, the base is always 10. Therefore for computing the antilog use base 10.

Step 3: Calculate the $10^{x}$. X is the number which you are using. If the mantissa of the number is 0 , then the computation is easy. Calculate the value $10^{2.6452}$. Use a calculator to find the value. Finally, it comes 441.7
Both methods will give the same result.

## Common Antilog Table

Below table helps to find the values of Characteristic Part and Mantissa Part of the number.

## COMMON ANTILOGARITH TABLE



Example: Find the antilog of $\mathbf{3 . 3 0 1 0}$

## Solution:

Given, antilog (3.3010)
Step 1: Characteristics part $=3$ and mantissa part $=3010$
Step 2: Use the antilog table for the row.30, then the column for 1, you get 2000.
Step 3: Find the value from the mean difference column for the row .30 and column 0 , it gives the value 0

Step 4: Add the values obtained in step 2 and 3, 2000 $+0=2000$.
Step 5: Now insert the decimal place. We know that the characteristic part is 3 and we have to add it with 1. Therefore, we get the value 4. Insert the decimal point after 4 places, and we get 2000.

Therefore, the solution of the antilog 3.3010 is 2000.

## prepp

# Latest Sarkari jobs, <br> Govt Exam alerts, <br> Results and Vacancies 

> Latest News and Notification

- Exam Paper Analysis
- Topic-wise weightage
- Previous Year Papers with Answer Key
- Preparation Strategy \& Subject-wise Books

To know more Click Here

