prepp

Practice, Learn and Achieve Your Goal with Prepp

NDA Exam

Study Material for Maths

Simplifying
 Government Exams

© SSC CHSL
Uisa IAS EXAM (ORRBNTPC

© SSC CGL

(1) SBIPO
íz ibPs CLERK
意AFCAT © SSCJE CTET
© CPIR UGC NET

(1)CAPF

itz IBPS RRB

EQUATION OF SPHERE

A sphere is defined as a completely round geometrical object in a three-dimensional space just like a round ball. To be geometrical, a sphere is a set of points that are equidistant from a point in space. The distance between the outer point and centre of the sphere is called the radius, denoted by r and the maximum straight distance between any two sides of the sphere through the centre is known as the diameter, denoted by d .

A hemisphere is exactly half of a sphere which can only be obtained when a sphere is split from the middle. The biggest circle of a sphere is a circle that has the same centre and radius of a sphere. A great circle of the sphere is a circle that has the same radius and centre as the sphere itself. In this article, let us discuss how to derive the equation of a sphere along with the surface area and the volume of the sphere in detail.

How to Derive the Equation of a Sphere?

The equation of a circle of radius r is given by:
$x^{2}+y^{2}=r^{2}$
You can relate it to the algebraic method of starting the Pythagoras theorem.

The point (x, y) lies on the circle only when the right triangle has sides of length $|x|$ and $|y|$ and hypotenuse of length r, which can be written as:
$x^{2}+y^{2}=r^{2}$
Pythagoras theorem can be used twice for the equation of a sphere. In the below figure, O is the origin and $P(x, y, z)$ is a point in three-space. P is on the sphere with radius r only when the distance from O to P is r.

Since $O A B$ is a right angle triangle, $x^{2}+y^{2}=s^{2}$. The triangle OBP is another right triangle and therefore, $s^{2}+z^{2}=r^{2}$. Hence, the distance between O and P can be expressed by:
$x^{2}+y^{2}+z^{2}=|O P|^{2}$
Hence, we can conclude that (x, y, z) lies on the sphere with radius r only if,
$x^{2}+y^{2}+z^{2}=r^{2}$
which is called the equation of a sphere.
If (a, b, c) is the centre of the sphere, r represents the radius, and x, y, and z are the coordinates of the points on the surface of the sphere, then the general equation of a sphere is $(x-a)^{2}+(y-b)^{2}+$ $(z-c)^{2}=r^{2}$

Volume of a Sphere Equation

The formula to calculate the volume of a sphere is given by the equation:
The volume of the sphere $=4 / 3 \pi r^{3}$
Where r is the radius of the sphere.

Surface Area of a Sphere Equation

The formula to calculate the surface area of the sphere is given by:
The Surface area of the sphere $=4 \pi r^{2}$ square units.

Example: Write the equation of the sphere in the standard form where the centre and radius of the sphere are given as $(11,8,-5)$ and 5 cm respectively.

Solution:

Given: Centre $=(11,8,-5)=(a, b, c)$
Radius $=5 \mathrm{~cm}$
We know that the equation of the sphere in the standard form is written as:
$(x-a)^{2}+(y-b)^{2}+(z-c)^{2}=r^{2}$
Now, substitute the given values in the above form, we get:
$(x-11)^{2}+(y-8)^{2}+(z-(-5))^{2}=5^{2}$
$(x-11)^{2}+(y-8)^{2}+(z+5)^{2}=25$
Thus, the equation of the sphere is $(x-11)^{2}+(y-8)^{2}+(z+5)^{2}=25$

prepp

Latest Sarkari jobs,
 Govt Exam alerts,
 Results and Vacancies

> Latest News and Notification

- Exam Paper Analysis
- Topic-wise weightage
- Previous Year Papers with Answer Key
- Preparation Strategy \& Subject-wise Books

To know more Click Here

