prepp

Practice, Learn and Achieve Your Goal with Prepp

NDA Exam

Study Material for Maths

Simplifying
 Government Exams

© SSC CHSL

© SSC CGL

(1) SBIPO
it ibps CLERK
妾AFCAT © SSCJE CTET
© CPIR UGC NET

(1)CAPF

itz IBPS RRB

TOTAL PROBABILITY THEOREM

Law of Total Probability

For two events A and B associated with a sample space S, the sample space can be divided into a set $A \cap B^{\prime}, A \cap B, A^{\prime} \cap B, A^{\prime} \cap B^{\prime}$. This set is said to be mutually disjoint or pairwise disjoint because any pair of sets in it is disjoint. Elements of this set are better known as a partition of sample space.

This can be represented by the Venn diagram as shown in fig. 1. In cases where the probability of occurrence of one event depends on the occurrence of other events, we use total probability theorem.

Figure 1: Division of sample space $\$$

Total Probability Theorem Statement

Let events $C_{1}, C_{2} \ldots C_{n}$ form partitions of the sample space S, where all the events have a non-zero probability of occurrence. For any event, A associated with S, according to the total probability theorem,
$\mathbf{P}(\mathbf{A})=\sum_{k=0}^{n} P\left(C_{k}\right) P\left(A \mid C_{k}\right)$

Figure 2

Total Probability Theorem Proof

From the figure $2,\left\{C_{1}, C_{2}, \ldots, C_{n}\right\}$ is the partitions of the sample space S such that, $C_{i} \cap C_{k}=\varphi$, where $i \neq k$ and $i, k=1,2, \ldots, n$ also all the events $C_{1}, C_{2} \ldots C_{n}$ have non zero probability. Sample space S can be given as,
$S=C_{1} \cup C_{2} \cup \ldots \cup C_{n}$

For any event A,
$A=A \cap S$
$=A \cap\left(C_{1} \cup C_{2} \cup \ldots \cup C_{n}\right)$
$=\left(A \cap C_{1}\right) \cup\left(A \cap C_{2}\right) \cup \ldots \cup\left(A \cap C_{n}\right)$
We know that $A \cap C_{i}$ and $A \cap C_{k}$ are the subsets of C_{i} and C_{k}. Here, C_{i} and C_{k} are disjoint for $i \neq k$. since they are mutually independent events which imply that $A \cap C_{i}$ and $A \cap C_{k}$ are also disjoint for all $i \neq k$. Thus,
$P(A)=P\left[\left(A \cap C_{1}\right) \cup\left(A \cap C_{2}\right) \cup \ldots . . \cup\left(A \cap C_{n}\right)\right]$
$=P\left(A \cap C_{1}\right)+P\left(A \cap C_{2}\right)+\ldots+P\left(A \cap C_{n}\right)$
We know that,
$P\left(A \cap C_{i}\right)=P\left(C_{i}\right) P\left(A \mid C_{i}\right)($ By multiplication rule of probability) \ldots
Using (2) and (3), (1) can be rewritten as,
$P(A)=P\left(C_{1}\right) P\left(A \mid C_{1}\right)+P\left(C_{2}\right) P\left(A \mid C_{2}\right)+P\left(C_{3}\right) P\left(A \mid C_{3}\right)+\ldots+P\left(C_{n}\right) P\left(A \mid C_{n}\right)$
Hence, the theorem can be stated in form of equation as,
$\mathrm{P}(\mathrm{A})=\sum_{k=0}^{n} P\left(C_{k}\right) P\left(A \mid C_{k}\right)$

Example: A person has undertaken a mining job. The probabilities of completion of job on time with and without rain are 0.42 and 0.90 respectively. If the probability that it will rain is 0.45 , then determine the probability that the mining job will be completed on time.

Solution:

Let A be the event that the mining job will be completed on time and B be the event that it rains. We have,
$P(B)=0.45$,
$P($ no rain $)=P\left(B^{\prime}\right)=1-P(B)=1-0.45=0.55$
By multiplication law of probability,
$P(A \mid B)=0.42$
$P\left(A \mid B^{\prime}\right)=0.90$
Since, events B and B^{\prime} form partitions of the sample space S, by total probability theorem, we have
$P(A)=P(B) P(A \mid B)+P\left(B^{\prime}\right) P\left(A \mid B^{\prime}\right)$
$=0.45 \times 0.42+0.55 \times 0.9$
$=0.189+0.495=0.684$
So, the probability that the job will be completed on time is 0.684 .

prepp

Latest Sarkari jobs,
 Govt Exam alerts,
 Results and Vacancies

> Latest News and Notification

- Exam Paper Analysis
- Topic-wise weightage
- Previous Year Papers with Answer Key
- Preparation Strategy \& Subject-wise Books

To know more Click Here

