Prepp

Practice, Learn and Achieve Your Goal with Prepp

NDA

Study Material for Chemistry

Simplifying **Government Exams**

PROPERTIES OF HYDROGEN, OXYGEN, NITROGEN AND CARBON

Hydrogen

- In the periodic table, hydrogen is the lightest element, its atomic weight is merely 1.008.
- The symbol of hydrogen is 'H' and the atomic number is '1.'
- In the early 16th century, hydrogen gas was first artificially produced by the reaction of acids and metals.
- Henry Cavendish first recognized the hydrogen gas a discrete substance during the period of 1766-81, as it produces water when it is burned.

Salient Features of Hydrogen

- In their plasma state, the non-remnant stars are primarily composed of hydrogen.
- At standard temperature and pressure, hydrogen appears colourless, tasteless, odourless, non-metallic, non-toxic, and highly combustible diatomic gas.
- The molecular formula of hydrogen is H₂.
- On the earth, hydrogen exists in molecular forms, for example, water or other organic compounds.
- Hydrogen also plays an important role in acid-base reactions.
- Hydrogen gas is highly flammable in the air.
- Pure hydrogen-oxygen flames radiate ultraviolet light; further, with high oxygen mix are nearly invisible to the naked eye.
- Hydrogen can react with almost every oxidizing element.
- At room temperature, Hydrogen normally reacts spontaneously and viciously with chlorine and fluorine and forms the corresponding hydrogen halides.

Occurrence of Hydrogen

- Consisting roughly about 75 percent of all baryonic mass, hydrogen is the most abundantly found chemical subsistence in the universe.
- Throughout the universe, hydrogen is typically found in the atomic and plasma states; however, the properties quite different from those of the molecular hydrogen.
- On the earth, hydrogen exists as the diatomic gas, i.e. H₂.
- Because of having light weight, hydrogen easily escapes from the earth's atmosphere.
- Hydrogen is the third most abundant element found on the Earth's surface, but largely found in form of hydrocarbons and water.

Compounds of Hydrogen

Following are the major compounds of hydrogen -

- Water H₂O
- Ammonia NH₃
- Hydrogen chloride HCl

- Hydrogen fluoride HF
- Hydrogen sulfide H₂S
- Methane CH₄
- Hydroxide OH⁻
- Hydrogen bromide HBr
- Hydrogen iodide HI
- Hydrogen cyanide HCN
- Phosphine PH₃
- Hydrogen selenide H₂Se
- Methanol CH₃OH
- Lithium hydride LiH
- Bicarbonate HCO₃
- Hydrogen telluride H₂Te
- Liquid hydrogen H₂
- Cyanide CN
- Calcium hydride CaH₂
- Heavy water D₂O
- Diborane B₂H₆
- Sodium hydride NaH
- Potassium hydride KH

Uses of Hydrogen

- The largest amount of H₂ is used in the processing of fossil fuels as well as in the production of ammonia.
- Hydrogen (H₂) is extensively used in the petroleum and chemical industries.
- H₂ is typically used as a hydrogenating agent, especially in increasing the saturation level of unsaturated fats and oils.
- H₂ is also used as a shielding gas in welding procedures, such as atomic hydrogen welding, etc.

Oxygen

- Oxygen is the member of group 16 on the periodic table; however, most of the time, it is treated differently from its group.
- The symbol of oxygen is 'O' and atomic number is '8.'
- Oxygen has about nine allotropes and the most common allotrope is diatomic oxygen (i.e. O₂). Other important allotrope is Ozone i.e. O₃.
- Oxygen, first time, was noticed by Swedish pharmacist Carl Wilhelm Scheele.

Salient Features of Oxygen

- Oxygen is characteristically categorized as the member of "chalcogen" group.
- The word "chalcogen" is derived from a Greek word "khalkós," which means "copper" and the Latin-Greek word "Genēs," which means born or produced.

- Oxygen is a highly reactive gas (or nonmetallic element); hence, it is an oxidizing agent that readily forms oxides with most of the elements and compounds.
- Oxygen has six valence electrons.
- The melting point of oxygen is -218.8°C and the boiling point is -183°C.

Occurrence of Oxygen

- With about 20.8 percent share (in total earth's atmospheric constituents), oxygen is the second ranked element of the earth's atmosphere.
- Oxygen occurs almost in sphere of the earth namely atmosphere, hydrosphere, and lithosphere.
- During the photosynthesis process, free oxygen is produced by all green plants.
- Oxygen occurs as constituent copper ores.
- A human body contains about 65 percent oxygen.
- By mass, almost half of the earth's crust is composed of oxygen (i.e., its oxides).
- By mass, oxygen is the third-most abundant element that found in the universe; the first and second are hydrogen and helium accordingly.
- Oxygen (O₂) is a colourless and odourless diatomic gas.
- Oxygen dissolves in water very easily; however, the solubility of oxygen in the water is temperature-dependent.

Compounds of Oxygen

Following are the major compounds of oxygen -

- Oxide
- Peroxide
- Carbon dioxide CO₂
- Hydroxide OH⁻
- Ozone O₃
- Mercury (II) oxide HgO
- Chlorate ClO₃
- Aluminum oxide Al₂O₃
- Carbon monoxide CO
- Hypochlorite ClO⁻
- Silicon dioxide SiO₂
- Hypofluorous acid HOF
- Sodium peroxide Na₂O₂
- Potassium chlorate KClO₃
- Oxygen difluoride OF₂

Sodium oxide - Na₂O

Uses of Oxygen

- Oxygen (O₂) is the most essential requirements for the respiration, without it, life cannot be imagined.
- Oxygen is used in medicine.
- Oxygen therapy is typically used to treat some diseases, such as, emphysema, pneumonia, some heart disorders, etc.
- Some of the underwater activities, such as scuba diving, submarines, etc. also use artificial oxygen.
- Aircrafts, mountaineers, etc. also use artificial oxygen.
- Oxygen is also used in some of the industries, e.g. smelting of iron ore into steel in this process, about 55% of oxygen is used.

Nitrogen

- Nitrogen is a chemical element of group of 15 of the periodic table; among all the elements of group 15, it is the lightest element.
- The symbol of nitrogen is 'N' and atomic number is 7.
- In 1772, Scottish physician Daniel Rutherford, first discovered and isolated carbon.
- However, the name 'nitrogen' was first given by Jean-Antoine-Claude Chaptal in 1790.

Salient Features of Nitrogen

- Nitrogen has two stable isotopes namely ¹⁴N and ¹⁵N.
- Free nitrogen atoms normally easily react with most of the elements and form nitrides.
- The molecules of N₂ is colorless, odorless, tasteless, and diamagnetic gas at standard conditions.
- The melting point of N_2 is -210° C and the boiling point is -196° C.
- Nitrogen compounds repetitively interchange between the atmosphere and living organisms, making a nitrogen cycle.

Occurrence of Nitrogen

- Nitrogen is most abundantly found element on the earth, as it constitutes about 78.1% of the entire volume of the earth's atmosphere.
- Nitrogen gas, which is an industrial gas, largely produced by the fractional distillation of liquid air.

Compounds of Nitrogen

Following are the major compounds of Nitrogen -

- Ammonium NH₄₊
- Ammonia NH₃
- Nitric acid HNO₃
- Nitrite NO₂₋
- Nitrogen dioxide NO₂

- Dinitrogen pentroxide N₂O₅
- Hydrazine N₂H₄
- Dinitrogen N₂
- Cyanide CN
- Ammonium nitrate (NH₄)(NO₃)
- Nitrogen trichloride NCl₃
- Nitrogen trifluoride NF₃
- Nitrogen triiodide NI₃
- Pyridine C₅H₅N
- Nitronium ion NO₂₊
- Hydrazoic acid HN₃
- Ammonium sulfate (NH₄)₂SO₄

Uses of Nitrogen

- Nitrogen compounds are extensively used in wide range of fields and industries.
- Pure nitrogen is used as food additive.
- Used in fire suppression systems especially for the information technology equipment.
- Also used in manufacturing stainless steel.
- Nitrogen is also used to inflate the tires of some of the aircraft and race cars.
- Liquid nitrogen is used as a refrigerant.

Carbon

- Carbon is a non-metallic and tetravalent element.
- Tetravalent means carbon makes four electrons available to form the covalent chemical bonds.
- Carbon has three isotopes that occur naturally namely ¹²C, ¹³C, and ¹⁴C.
- Among them, ¹²C and ¹³C are stable, but ¹⁴C is a radioactive isotope. Half-life of ¹⁴C is about 5,730 years.

Salient Features of Carbon

- The physical properties of carbon largely depend on its allotropes.
- Major allotropes of carbon are graphite, diamond, and amorphous carbon.
- Graphite is opaque, black, and very soft; hence, it used to form a streak on the paper.
- Diamond very hard (the hardest naturally occurring material) and transparent.
- Graphite is a good conductor of electricity.
- Diamond is bad conductor of electricity.
- Carbon most likely has the highest sublimation point among all the elements.

Occurrence of Carbon

• In terms of mass, carbon is the fourth most abundant chemical element found in the universe (after hydrogen, helium, and oxygen).

- Carbon is available in abundance in the Sun, stars, comets, and in the atmospheres of most of the planets.
- Carbon is found in the earth's atmosphere and dissolved in water.
- Hydrocarbons, such as coal, petroleum, and natural gas, all of them contain carbon.
- Carbon is also found in methane hydrates, which found in polar regions and under the seas.
- Some of the rocks enriched of carbon are coal, limestone, dolomite, etc.
- Coal is very rich in carbon; hence, it is the largest commercial source of mineral carbon.
- Coal shares about 4,000 gigatonnes or 80% of total fossil fuel.

Compounds of Carbon

Following are the major compounds of Carbon -

- Cyanogen CN₂
- Hydrogen cyanide HCN
- Cyanamide CN₂H₂
- Isocyanic acid HNCO
- Cyanogen chloride CNCl
- Chlorosulfonyl isocyanate CNClO₃S
- Cyanuric chloride NCCl₃
- Carbon disulfide CS₂
- Carbonyl sulfide OCS
- Carbon monosulfide CS

Uses of Carbon

- Depending upon the allotrops, carbon is used in range of applications.
- Carbon is one of the most essential elements of life without it, we cannot imagine life on the earth.
- The fossil fuel namely methane gas and crude oil (petroleum), coal etc. are used in everyday life.
- Graphite, combining with clay, used in making 'lead' used in pencils.
- Charcoal is also used as a drawing material in artwork, iron smelting, barbecue grilling, etc.
- Diamond is usually used in jewellery.
- Industrial diamonds are used in cutting, drilling, and polishing tools for machining the metals and stone.
- Fossil hydrocarbons, and carbon fibre are used in making plastic.

Prepp

Latest Sarkari jobs, Govt Exam alerts, Results and Vacancies

- Latest News and Notification
- Exam Paper Analysis
- ► Topic-wise weightage
- Previous Year Papers with Answer Key
- Preparation Strategy & Subject-wise Books

To know more Click Here

www.prepp.in