ANALYSIS OF GATE 2020

Memory Based

Instrumentation Engineering

A Forum of IIT / IISC Graduates

IN ANALYSIS-2020_Feb-1_Morning

SUBJECT	No. of Ques.	Topics Asked in Paper(Memory Based)	Level of Ques.	Total Marks
Engineering Mathematics	1 Marks:4 2 Marks:5	Complex variable, Numerical methods, Differential equations, Linear algebra	Easy	14
Network Theory	1 Marks:4 2 Marks:2	Mesh, Two-Port	Easy	8
Signals and Systems	1 Marks:2 2 Marks:3	Sampling, DFT, Period	Easy	8
Control Systems	1 Marks:2 2 Marks:6	Phase margin, Time response analysis, Nyquist Plot	Easy	14
Analog Electronics	1 Marks:3 2 Marks:4	Miller effect	Easy	11
Digital Circuits	1 Marks:2 2 Marks:3	DAC, Boolean simplification, Venn diagram, Multiplexer	Easy	8
Communications	$\begin{aligned} & 1 \text { Marks:0 } \\ & 2 \text { Marks:0 } \end{aligned}$	-		0
Electrical and Electronic measurement	1 Marks:2 2 Marks:3	Three phase circuit	Difficult	8
Transducers	1 Marks:1 2 Marks:3	LVDT, Piezoelectric, Strain gauge, Capacitive sensor	Easy	7
Process Control	1 Marks: 2 Marks:	-		0
Optical Instrumentation	1 Marks:1 2 Marks:3	-		7
General Aptitude	$\begin{aligned} & 1 \text { Marks:5 } \\ & 2 \text { Marks:5 } \end{aligned}$		Average	15
Total	65			100
Faculty Feedback	Overall paper is straight forward with no twist and tricks . Cut-off will be high.			

GATE 2020 Examination* (Memory Based)

Instrumentation Engineering

Test Date: $1^{\text {st }}$ Feb-2020
Test Time: 9.30 am to 12.30 pm
Stream Name: Instrumentation Engineering

General Aptitude

Q. 1 - Q. 5 Carry One Mark each.

1. I do not think you know the case well enough to have opinions. Having said that, I agree with your point.
What does the phrase "having said that" mean?
(A) in addition to what I have said
(B) in opposed to what I have said
(C) contrary to what I have said
(D) despite what i have said
[Ans. D]
2. He is known for his unscrupulous ways. He always sheds \qquad tears to deceive people.
(A) crocodile
(B) fox
(C) crocodile's
(D) fox's
[Ans. A]
3. $P, Q, R \& S$ are uniquely coded using $\alpha \& \beta$. If P is coded as $\alpha \alpha$ and Q is coded as $\alpha \beta$ then $R \&$ S respectively. It can be coded as
(A) $\beta \alpha \& \beta \beta$
(B) $\alpha \beta \& \beta \beta$
(C) $\beta \beta \& \alpha \alpha$
(D) $\alpha \alpha \& \beta \beta$
[Ans. *]
4. Build: Building, Grow: \qquad
(A) Grew
(B) Grown
(C) Growth
(D) Grow
[Ans. C]

Exam Analysis

5. Jofra archer, the England fast bowler is \qquad than accurate.
(A) More fast
(B) More faster
(C) Faster
(D) Less faster
[Ans. *]

Q. 6 - Q. 10 Carry Two Mark each.

6. Select the graph that schematically represents both $y=x^{m}$ and $y=x^{1 / m}$ properly in the interval $0 \leq x \leq 1$ for integer value of m, where $m>1$
(A)

(B) y

(C)

(D)

[Ans. C]
7. The sum of the first n terms in the sequence $8,88,888,8888, \ldots$ is \qquad
(A) $\frac{80}{81}\left(10^{n}-1\right)+\frac{8}{9} n$
(B) $\frac{80}{81}\left(10^{\mathrm{n}}-1\right)-\frac{8}{9} \mathrm{n}$
(C) $\frac{81}{80}\left(10^{n}-1\right)+\frac{8}{9} n$
(D) $\frac{81}{80}\left(10^{n}-1\right)-\frac{8}{9} n$
[Ans. B]
8. What is the success of student of school P, Q, R, S in the given bar graph?

(A) 59.3%
(B) 52%
(C) 53%
(D) 50%
[Ans. A]
9. If x indicates greatest integer function such that $[x]$: greatest integer less than equal to x. If $y=[x]$, then area under y for is $x \in[1,4]$ is
(A) 4
(B) 1
(C) 3
(D) 6
[Ans. *]
10. A

Technical

Q.1-Q. 25 Carry One Mark each.

1. What is the logical expression for the shaded region given in the Venn-Diagram

(A) $(\overline{\mathrm{A}}+\mathrm{B})(\mathrm{A}+\overline{\mathrm{B}})$
(B) $A B+\bar{A} \bar{B}$
(C) $(\mathrm{A}+\mathrm{B})(\overline{\mathrm{A}}+\overline{\mathrm{B}})$
(D) $(\mathrm{A}+\overline{\mathrm{A}})(\overline{\mathrm{A}}+\overline{\mathrm{B}})$
[Ans. C]
2. samples/sec and passed through a low pass filter having cut off frequency of 25 kHz then the frequencies at the output of filter is \qquad
[Ans. *] Range: 5 to 5
3. $x(t)=e^{-|t|} ;-\infty \leq t \leq \infty$. $X(\omega)$ is Fourier Transform of $x(t)$ then the value of $X(0)$ is [Ans. *]Range: 2 to 2
4. $\hat{\mathrm{i}}, \hat{\jmath}, \hat{\mathrm{k}}$ are mutually orthogonal vectors along $\mathrm{x}, \mathrm{y}, \mathrm{z}$ axes. Plane $\mathrm{x} y$ equation $\mathrm{z}=0$ are having vectors such that $\overrightarrow{\mathrm{a}} \neq \alpha \overrightarrow{\mathrm{b}}$. What is the vector perpendicular to $\mathrm{z}=0$ plane
(A) $\hat{\imath}-\hat{\jmath}$
(B) $\hat{\mathrm{k}}$
(C) $\hat{\imath}+\hat{\jmath}$
(D) $-\hat{\jmath}$
[Ans.B]
5. Period of $\sin (2 n \pi) ; n=0,1,2 \cdots$ is \qquad
[Ans. *]Range: 1 to 1
6. For circuit shown below

The value of $\mathrm{I}_{\mathrm{X}}=$? Assume all diodes to be ideal.
[Ans. *]
7. For the circuit shown below

The ratio $\mathrm{V}_{\mathrm{s}} / \mathrm{I}_{\mathrm{x}}$ is \qquad Ω.
[Ans. *]
8. The value of $\mathrm{k}=$ \qquad

$$
x(t)=10 u(t)
$$

[Ans. *]
9. A second order system has poles at $-3 \pm 4 \mathrm{j}$. The system will reach the maximum output for a step input at \qquad Sec.
[Ans. *]Range: 0.7854 to 0.7854
10. Transfer function $C(s)=\frac{1+0.2 \mathrm{~s}}{1+0.05 \mathrm{~s}}$. The compensator will have a maximum lead or lag at frequency of \qquad $\mathrm{rad} / \mathrm{s}$
[Ans. ${ }^{*}$]Range: 10 to 10

눌: 080-4061 1000, info@thegateacademy.com ©Copyright reserved. Web:www.thegateacademy.com
11. Value of ' k ' at the breakaway point for a system having OLTF $\frac{k}{s(s+2)(s+6)}$ is \qquad
[Ans. *]Range: 5.049 to 5.049
12. The experience of Y in below circuit is \qquad

(A) $\mathrm{S}_{1}+\mathrm{S}_{0}$
(B) $\mathrm{S}_{0} \cdot \overline{\mathrm{~S}}_{1}$
(C) $\mathrm{S}_{1} \oplus \mathrm{~S}_{0}$
(D) $\mathrm{S}_{1} \overline{\mathrm{~S}}_{0}$
[Ans. C]
13. A bridge was balanced at $\mathrm{C}=10 \mathrm{nF}, \mathrm{R}=100 \mathrm{k} \Omega$

The Q factor of the coil is \qquad
[Ans. *]Range: 3.14 to 3.14
14. Two 100Ω resistors having tolerance of 3% and 4% are connected in series. The tolerance of the overall resistance obtained is \pm \qquad \%.
[Ans. *]Range: 3.5 to 3.5
15. In half effect sensor the current in the conductor I, perpendicular magnetic field B and voltage E are related as
(A) $E \propto B, I$
(B) $\mathrm{E} \propto \frac{1}{\mathrm{~B}}, \mathrm{I}$
(C) $\mathrm{E} \propto \mathrm{B}, \frac{1}{\mathrm{I}}$
(D) $\mathrm{E} \propto \frac{1}{\mathrm{BI}}$
[Ans. *]
16. A
17. A
18. A
19. A
20. A
21. A
22. A
23. A
24. A
25. A

Q. 26 - Q. 55 Carry Two Mark each.

26. If the 3-point DFT of a signal $x[n]$ is given as $X\{k\}=\{1,2,1\}$ then the value of $X[2]$ is
\qquad
[Ans. *]Range: 0 to 0
27. Bag ' A ' contains 7 red and 3 blue balls and bag ' B ' contains 3 red and 7 blue balls. Find the probability that if ball drawn is red is from the bag A.
[Ans. * Range: 0.7 to 0.7
28. Given $f(z)=\frac{1}{z+a}$ in the circle having center at ($-a, 0$). Find the value of $\oint f(z) d z$ when ' a ' is greater than zero.
(A) $2 \pi \mathrm{i}$
(B) $4 \pi \mathrm{i}$
(C) $8 \pi \mathrm{i}$
(D) 0
[Ans. A]
29. For the circuit shown in figure

Power dissipation in 100Ω resistor is \qquad W. (upto two decimal places)
[Ans. ${ }^{*}$]
30. For 10 -bit DAC having full scale value of 1.023 V . What is the change of output voltage if bits (D_{7} to D_{0}) are changed from 10101010 to 10101011 is \qquad (in mV)
[Ans. *]Range: 1 to 1
31. The present state of synchronous counter is $Q_{A} Q_{B}=1,1$ if $x=101$ in the subsequent clock cycles, the decimal value of $\left[\mathrm{Q}_{\mathrm{A}} \mathrm{Q}_{\mathrm{B}} \mathrm{Y}\right]_{2}$ is \qquad
[Ans. *]Range: 7 to 7
32. A 3 phase 400 V power supply is connected to a balanced load of 400Ω. The power is measured using 2 wattmeters, one wattmeter reads ' 0 W ' and the current is $\sqrt{2} \mathrm{~A}$. The power drawn is \qquad Watts.
[Ans. *]Range: 488 to 490
33. Reading of the meter is \qquad Volts.

[Ans. *]Range: 1 to 1
34. If $\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\Sigma \mathrm{m}(0,1,2,3,6,8,9,10,11)+\Sigma \mathrm{d}(3,7,14,15)$. The minimized Sum Of Products (SOP) expression is
(A) $\bar{B}+C$
(B) $\mathrm{AB}+\mathrm{BC}$
(C) $A \bar{B}+\bar{B} C$
(D) $\mathrm{ABC}+\overline{\mathrm{A}} \mathrm{BC}$
[Ans. A]
35. For the Op -Amp circuit shown below, the output voltage V_{o} is \qquad V. (round-off to 2 decimal places).

[Ans. *]
36. $G(s) H(s)=\frac{2(s+1)}{s^{2}}$. The system has a phase margin of \qquad degrees
[Ans. *]

Exam Analysis

37. For the circuit shown below

The RMS value of I \qquad
[Ans. *]
38. For the circuit shown below

Equivalent capacitance across AB is \qquad $\mu \mathrm{F}$.
[Ans. *]
39. A
40. A
41. A
42. A
43. A
44. A
45. A
46. A
47. A
48. A
49. A
50. A
51. A
52. A
53. A
54. A
55. A
56. A
57. A
58. A
59. A
60. A
61. A
62. A
63. A
64. A
65. A

THE GATE ${ }^{\circ}$ ACADEMY
 A Forum of IIT / IISC Graduates

Topper's Club Be a Member

Stand a chance to WIN exciting prizes \& Post GATE Guidance

iPads

