

ANALYSIS OF GATE 2020

Memory Based

Instrumentation Engineering

IN ANALYSIS-2020_Feb-1_Morning

SUBJECT	No. of Ques.	Topics Asked in Paper(Memory Based)	Level of Ques.	Total Marks	
Engineering Mathematics	1 Marks:4 2 Marks:5	Complex variable, Numerical methods, Differential equations, Linear algebra	Easy	14	
Network Theory	1 Marks:4 2 Marks:2	Mesh, Two-Port	Easy	8	
Signals and Systems	1 Marks:2 2 Marks:3	Sampling, DFT, Period	Easy	8	
Control Systems	1 Marks:2 2 Marks:6	Phase margin, Time response analysis, Nyquist Plot	Easy	14	
Analog Electronics	1 Marks:3 2 Marks:4	Miller effect	Easy	11	
Digital Circuits	1 Marks:2 2 Marks:3	DAC, Boolean simplification, Venn diagram, Multiplexer	Easy	8	
Communications	1 Marks:0 2 Marks:0	-		0	
Electrical and Electronic measurement	1 Marks:2 2 Marks:3	Three phase circuit	Difficult	8	
Transducers	1 Marks:1 2 Marks:3	LVDT, Piezoelectric, Strain gauge, Capacitive sensor	Easy	7	
Process Control	1 Marks: 2 Marks:	-		0	
Optical Instrumentation	1 Marks:1 2 Marks:3	-		7	
General Aptitude	1 Marks:5 2 Marks:5		Average	15	
Total	65			100	
Faculty Feedback	Overall paper is straight forward with no twist and tricks . Cut-off will be high.				

GATE 2020 Examination* (Memory Based)

Instrumentation Engineering

Test Date: 1st Feb-2020

Test Time: 9.30 am to 12.30 pm

Stream Name: Instrumentation Engineering

General Aptitude

Q.1 - Q.5 Carry One Mark each.

I do not think you know the case well enough to have opinions. Having said that, I agree 1. aemy.com with your point.

What does the phrase "having said that" mean?

- (A) in addition to what I have said
- (B) in opposed to what I have said
- (C) contrary to what I have said
- (D) despite what i have said

[Ans. D]

2.	He is known for his uns	crupulous ways. He always sheds	tears to deceive people.
	(A) crocodile		
	(B) fox		

- (C) crocodile's
- (D) fox's

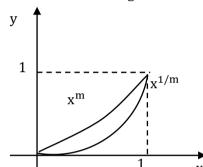
[Ans. A]

- 3. P, Q, R & S are uniquely coded using α & β . If P is coded as $\alpha\alpha$ and Q is coded as $\alpha\beta$ then R & S respectively. It can be coded as
 - (Α) βα & ββ
 - (B) $\alpha\beta \& \beta\beta$
 - (C) ββ & αα
 - (D) αα & ββ

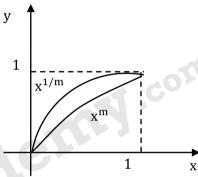
[Ans. *]

- 4. Build: Building, Grow:___
 - (A) Grew
 - (B) Grown
 - (C) Growth
 - (D) Grow

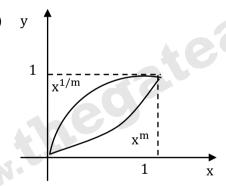
[Ans. C]

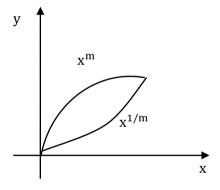

- 5. Jofra archer, the England fast bowler is _____ than accurate.
 - (A) More fast
 - (B) More faster
 - (C) Faster
 - (D) Less faster

[Ans. *]


Q.6 - Q.10 Carry Two Mark each.

Select the graph that schematically represents both $y = x^m$ and $y = x^{1/m}$ properly in the 6. interval $0 \le x \le 1$ for integer value of m, where m>1


(A)


(B)

(C)

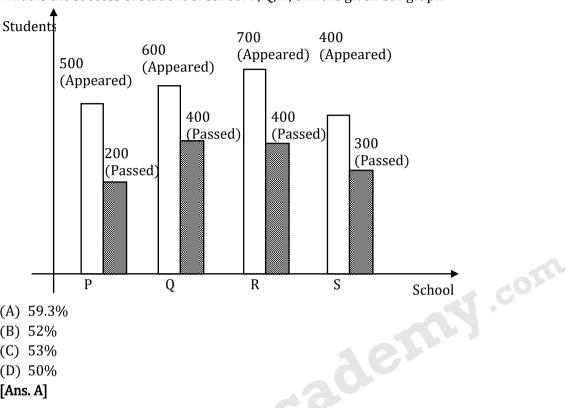
(D)

[Ans. C]

7. The sum of the first n terms in the sequence 8, 88, 888, 888, ... is _____

(A)
$$\frac{80}{81}(10^n - 1) + \frac{8}{9}n$$

(B)
$$\frac{80}{81}(10^{n}-1)-\frac{8}{9}n$$


(C)
$$\frac{81}{80}(10^{n} - 1) + \frac{8}{9}n$$

(D) $\frac{81}{80}(10^{n} - 1) - \frac{8}{9}n$

(D)
$$\frac{81}{80}(10^{\rm n}-1)-\frac{8}{9}{\rm m}$$

[Ans. B]

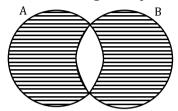
8. What is the success of student of school P, Q, R, S in the given bar graph?

- (A) 59.3%
- (B) 52%
- (C) 53%
- (D) 50%

[Ans. A]

- 9. If x indicates greatest integer function such that [x]: greatest integer less than equal to x. If y = [x], then area under y for is $x \in [1,4]$ is
 - (A) 4
 - (B) 1
 - (C) 3
 - (D) 6

[Ans. *]


com

IN

Technical

Q.1 - Q.25 Carry One Mark each.

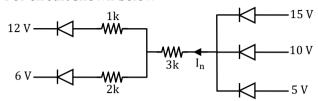
1. What is the logical expression for the shaded region given in the Venn-Diagram

- (A) $(\overline{A} + B)(A + \overline{B})$
- (B) $AB + \overline{A}\overline{B}$
- (C) $(A + B)(\overline{A} + \overline{B})$
- (D) $(A + \overline{A})(\overline{A} + \overline{B})$

[Ans. C]

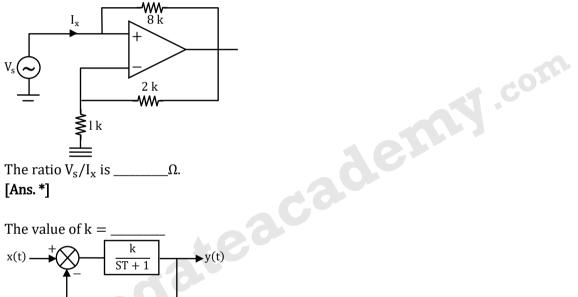
2. samples/sec and passed through a low pass filter having cut off frequency of 25 kHz then the frequencies at the output of filter is _____ [Ans. *] Range: 5 to 5

3. $x(t) = e^{-|t|}$; $-\infty \le t \le \infty$. $X(\omega)$ is Fourier Transform of x(t) then the value of X(0) is [Ans. *]Range: 2 to 2


- 4. \hat{i} , \hat{j} , \hat{k} are mutually orthogonal vectors along x, y, z axes. Plane x y equation z = 0 are having vectors such that $\vec{a} \neq \alpha \vec{b}$. What is the vector perpendicular to z = 0 plane
 - $(A) \hat{i} \hat{j}$
 - (B) k
 - (C) $\hat{i} + \hat{j}$
 - $(D) \hat{j}$

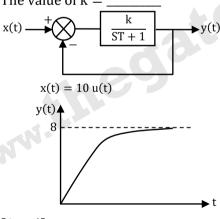
[Ans .B]

Period of $\sin(2n\pi)$; $n = 0, 1, 2 \cdots$ is _____ 5. [Ans. *]Range: 1 to 1


6. For circuit shown below

The value of $I_x = ?$ Assume all diodes to be ideal.

[Ans. *]


7. For the circuit shown below

The ratio V_s/I_x is

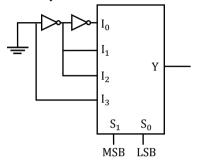
[Ans. *]

8. The value of k =

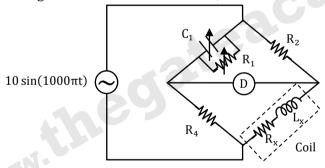
[Ans. *]

9. A second order system has poles at -3 ± 4 j. The system will reach the maximum output for a step input at _____ Sec.

[Ans. *]Range: 0.7854 to 0.7854


Transfer function $C(s) = \frac{1+0.2 \, s}{1+0.05 \, s}$. The compensator will have a maximum lead or lag at **10**. frequency of _____rad/s

[Ans. *]Range: 10 to 10


- 11. Value of 'k" at the breakaway point for a system having OLTF $\frac{k}{s(s+2)(s+6)}$ is _______ [Ans. *]Range: 5.049 to 5.049
- **12.** The experience of Y in below circuit is _____

- (A) $S_1 + S_0$
- (B) $S_0.\overline{S}_1$
- (C) $S_1 \oplus S_0$
- (D) $S_1 \overline{S}_0$

[Ans. C]

13. A bridge was balanced at C = 10nF, R = 100 k Ω

The Q factor of the coil is _____

[Ans. *]Range: 3.14 to 3.14

14. Two 100 Ω resistors having tolerance of 3% and 4% are connected in series. The tolerance of the overall resistance obtained is \pm _____%.

[Ans. *]Range: 3.5 to 3.5

demiy .com

- In half effect sensor the current in the conductor I, perpendicular magnetic field B and voltage E are related as
 - (A) $E \propto B, I$
 - (B) $E \propto \frac{1}{B}$, I
 - (C) $E \propto B, \frac{1}{\tau}$
 - (D) $E \propto \frac{1}{BI}$

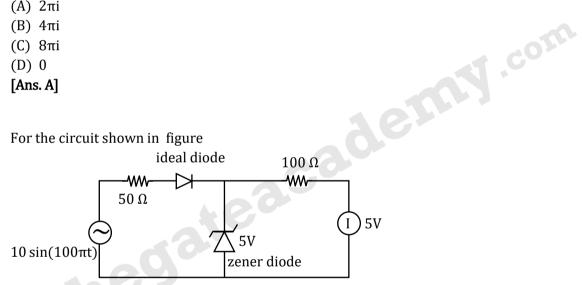
[Ans. *]

- x. A 16. Α
- **17**.
- 18.
- **19**.
- 20.
- 21.
- 22.
- 23.
- 24.
- **25**.

Q.26 - Q.55 Carry Two Mark each.

If the 3-point DFT of a signal x[n] is given as $X\{k\} = \{1, 2, 1\}$ then the value of X[2] is

[Ans. *]Range: 0 to 0


27. Bag 'A' contains 7 red and 3 blue balls and bag 'B' contains 3 red and 7 blue balls. Find the probability that if ball drawn is red is from the bag A.

[Ans. * Range: 0.7 to 0.7

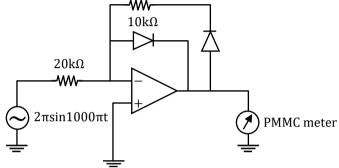
- Given $f(z) = \frac{1}{z+a}$ in the circle having center at (-a, 0). Find the value of $\oint f(z)dz$ when 'a' is 28. greater than zero.
 - (A) 2πi
 - (B) 4πi
 - (C) 8πi
 - (D) 0

[Ans. A]

29. For the circuit shown in figure

Power dissipation in 100Ω resistor is _____ W. (upto two decimal places) [Ans. *]

- **30.** For 10-bit DAC having full scale value of 1.023V. What is the change of output voltage if bits (D₇ to D₀) are changed from 1010 1010 to 1010 1011 is _____(in mV) [Ans. *]Range: 1 to 1
- The present state of synchronous counter is $Q_AQ_B=1$, 1 if $x=1\,0\,1$ in the subsequent clock cycles, the decimal value of $[Q_A Q_B Y]_2$ is _____ [Ans. *]Range: 7 to 7

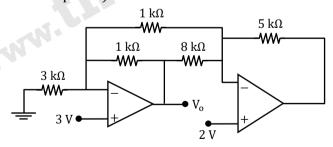

J.com

IN

32. A 3 phase 400V power supply is connected to a balanced load of 400 Ω . The power is measured using 2 wattmeters, one wattmeter reads '0W' and the current is $\sqrt{2}$ A. The power drawn is _____ Watts.

[Ans. *]Range: 488 to 490

33. Reading of the meter is _ Volts.

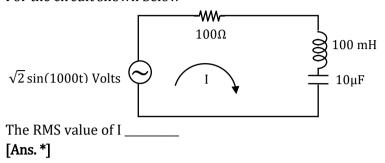


[Ans. *]Range: 1 to 1

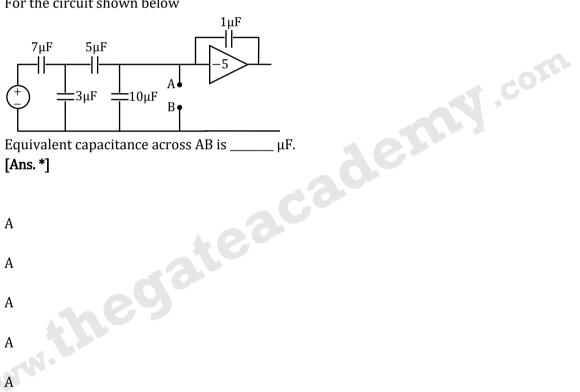
- If $F(A, B, C, D) = \Sigma m(0, 1, 2, 3, 6, 8, 9, 10, 11) + \Sigma d(3, 7, 14, 15)$. The minimized Sum Of Products (SOP) expression is
 - (A) $\overline{B} + C$
 - (B) AB + BC
 - (C) $A\overline{B} + \overline{B}C$
 - (D) $ABC + \overline{A}BC$

[Ans. A]

For the Op-Amp circuit shown below, the output voltage Vo is ______V. (round-off to 2 **35**. decimal places).



[Ans. *]


36. $G(s)H(s) = \frac{2(s+1)}{s^2}$. The system has a phase margin of _____ degrees [Ans. *]

37. For the circuit shown below

38. For the circuit shown below

Equivalent capacitance across AB is _

[Ans. *]

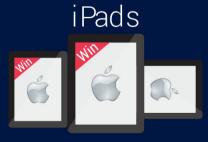
- **39**.
- **40**. A
- 41.
- **42**.
- **43**.
- 44.

GATE 2020 Exam Analysis

IN

- 45. A
- 46.
- **47**. A
- 48.
- 49. A
- **50**. A
- **51**.
- w.thegatea.ca.demy.com **52.** Α
- 53.
- **54**. A
- **55.** A
- **56**. Α
- 57. A
- **58**.
- 59.
- 60.
- 61. A
- 62.
- 63. Α
- 64. A
- 65.

THE GATE ACADEMY PRESENTS



Topper's Club

Be a Member

Stand a chance to WIN exciting prizes & Post GATE Guidance

MacBooks

