prepp

Practice, Learn and Achieve Your Goal with Prepp

NDA Exam

Study Material for Maths

Simplifying
 Government Exams

© SSC CHSL

© SSC CGL

(1) SBIPO
it ibps CLERK
妾AFCAT © SSCJE CTET
© CPIR UGC NET

(1)CAPF

itz IBPS RRB

MULTIPLICATION RULE OF PROBABILITY

The multiplication rule of probability explains the condition between two events. For two events A and B associated with a sample space S, the set $A \cap B$ denotes the events in which both event A and event B have occurred. Hence, $(A \cap B)$ denotes the simultaneous occurrence of the events A and B. The event $A \cap B$ can be written as $A B$. The probability of event $A B$ is obtained by using the properties of conditional probability.

Multiplication Rule of Probability Statement and proof

We know that the conditional probability of event Agiven that B has occurred is denoted by $P(A \mid B)$ and is given by:
$P(A \mid B)=\frac{P(A \cap B)}{P(B)}$

$$
P(B)
$$

Where, $P(B) \neq 0$
$P(A \cap B)=P(B) \times P(A \mid B)$
$P(B \mid A)=\frac{P(B \cap A)}{P(A)}$
Where, $P(A) \neq 0$.
$P(B \cap A)=P(A) \times P(B \mid A)$
Since, $P(A \cap B)=P(B \cap A)$
$P(A \cap B)=P(A) \times P(B \mid A)$
From (1) and (2), we get:
$P(A \cap B)=P(B) \times P(A \mid B)=P(A) \times P(B \mid A)$ where,
$P(A) \neq 0, P(B) \neq 0$.
The above result is known as multiplication rule of probability.
For independent events A and $B, P(B \mid A)=P(B)$. The equation (2) can be modified into,
$P(A \cap B)=P(B) \times P(A)$

Multiplication Theorem in Probability

We have already learned the multiplication rules we follow in probability, such as;
$P(A \cap B)=P(A) \times P(B \mid A)$; if $P(A) \neq 0$
$P(A \cap B)=P(B) \times P(A \mid B)$; if $P(B) \neq 0$
Let us learn here the multiplication theorems for independent events A and B.
If A and B are two independent events for a random experiment, then the probability of simultaneous occurrence of two independent events will be equal to product of their probabilities. Hence,
$P(A \cap B)=P(A) \cdot P(B)$

Now, from multiplication rule we know;
$P(A \cap B)=P(A) \times P(B \mid A)$
Since A and B are independent, therefore;
$P(B \mid A)=P(B)$
Therefore, again we get;
$P(A \cap B)=P(A) \cdot P(B)$
Hence, proved.

Example: An urn contains 20 red and 10 blue balls. Two balls are drawn from a bag one after the other without replacement. What is the probability that both the balls drawn are red?

Solution: Let A and B denote the events that first and second ball drawn are red balls. We have to find $P(A \cap B)$ or $P(A B)$.
$P(A)=P($ red balls in first draw $)=20 / 30$
Now, only 19 red balls and 10 blue balls are left in the bag. Probability of drawing a red ball in second draw too is an example of conditional probability where drawing of second ball depends on the drawing of first ball.

Hence Conditional probability of B on A will be,
$P(B \mid A)=19 / 29$
By multiplication rule of probability,
$P(A \cap B)=P(A) \times P(B \mid A)$
$P(A \cap B)=\frac{20}{30} \times \frac{19}{29}=\frac{38}{87}$

prepp

Latest Sarkari jobs,
 Govt Exam alerts,
 Results and Vacancies

> Latest News and Notification

- Exam Paper Analysis
- Topic-wise weightage
- Previous Year Papers with Answer Key
- Preparation Strategy \& Subject-wise Books

To know more Click Here

